Learning Convolutional Neural Networks for Graphs

2018-01-17  21:41:57

【Introduction】

这篇 paper 是发表在 ICML 2016 的:http://jmlr.org/proceedings/papers/v48/niepert16.pdf

上图展示了传统 CNN 在 image 上进行卷积操作的工作流程。(a)就是通过滑动窗口的形式,利用3*3 的卷积核在 image 上进行滑动,来感知以某一个像素点为中心的局部图像区域(local image patch);(b)感受野所创建的 node sequence,以及由超参数所决定的感受野的形状。

本文将 CNN 拓展到大规模的基于 graph 的学习问题当中,主要考虑如下两类问题:

1. 给定一组 graphs,学习一个函数,使之可以在 unseen graphs 用于 classification 或者 regression problem。

The nodes of any two graphs are not necessarily in correspondence. For instance, each graph of the collection could model a chemical compound and the output could be a function mapping unseen compounds to their level of activity against cancer cells.

2. 给定一个大型的 graph,学习 graph 的表示,使其可以用于推理不可见的 graph 属性,例如:node types 或者 missing edges。

本文提出一种学习表示的框架来进行 有向图 和 无向图的分类。这个图可能拥有多个离散和连续属性的 nodes 和 edges,可能包含多种类型的 edges。与传统CNN 相比,我们从 input graphs 中获得 locally connected neighborhoods。这些近邻 可以有效的产生,并且作为卷积结构的感受野,允许该框架学习有效的 graph representation。

For numerous graph collections a problem-specific ordering (spatial, temporal, or otherwise) is missing and the nodes of the graphs are not in correspondence. In these instances, one has to solve two problems:

  (i) Determining the node sequences for which neighborhood graphs are created;

  (ii) computing a normalization of neighborhood graphs, that is, a unique mapping from a graph representation into a vector space representation.

而本文所提出的 graph representation 的方法,很好的解决了上述两个问题。具体的来说,可以分为如下几个步骤:

  1. 对于每一个输入的 graph,首先确定节点及其次序;(For each input graph, it first determines nodes (and their order) for which neighborhood graphs are created. )

  2. 对于每一个节点,包含 k 个节点的近邻 被提取并且进行归一化,即,将其唯一的映射到固定长度的线性序列;归一化的近邻 可以看做是一个节点的感受野;(For each of these nodes, a neighborhood consisting of exactly k nodes is extracted and normalized, that is, it is uniquely mapped to a space with a fixed linear order. The normalized neighborhood serves as the receptive field for a node under consideration.)

  3. 最后,特征学习成分,例如 卷积、全连接层 被组合起来作用于归一化的 graphs。(Finally, feature learning components such as convolutional and dense layers are combined with the normalized neighborhood graphs as the CNN’s receptive fields. )


【流程】下面具体介绍一下构建卷积分片的步骤以及最后的卷积结构:

  1. 节点序列选择:为了对图中所有的节点进行标号排序,本文引入了图标号函数,将图中的节点集合根据向心性(节点的度、中心度等)映射为有序的节点序列。从该序列中根据一定的间隔s隔段选取w个节点构成最终的节点序列。

  2. 邻居节点收集:对于上一步获得的节点序列中的每一个节点,利用广度优化搜索扩展邻居节点,和源节点一起构成一个k大小的邻域集合。

  3. 子图规范化:对于一个邻域集合的规划化过程如下图所示。对邻域集合中的个节点按照标号函数k进行排序,得到接受域。那么,对于节点的属性,k个节点属性值构成了一个输入通道,对于边的属性,k^2个属性值也构成了一个输入通道。我们可以分别用一维的卷积层来处理这两种输入通道(对于节点属性卷积层长度为k,对于边属性卷积层长度为k^2)


Reference:

1. 知乎博客:https://zhuanlan.zhihu.com/p/27587371

2. 对应的 PDF:http://www.matlog.net/icml2016_slides.pdf

【论文笔记】Learning Convolutional Neural Networks for Graphs的更多相关文章

  1. 论文笔记——Factorized Convolutional Neural Networks

    1. 论文思想 将3D卷积分解为spatial convolution in each channel and linear projection across channels. (spatial ...

  2. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  3. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

    Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...

  4. 论文笔记:Diffusion-Convolutional Neural Networks (传播-卷积神经网络)

    Diffusion-Convolutional Neural Networks (传播-卷积神经网络)2018-04-09 21:59:02 1. Abstract: 我们提出传播-卷积神经网络(DC ...

  5. 论文笔记(1)-Dropout-Improving neural networks by preventing co-adaptation of feature detectors

    Improving neural networks by preventing co-adaptation of feature detectors 是Hinton在2012年6月份发表的,从这篇文章 ...

  6. 【论文笔记】Progressive Neural Networks 渐进式神经网络

    Progressive NN Progressive NN是第一篇我看到的deepmind做这个问题的.思路就是说我不能忘记第一个任务的网络,同时又能使用第一个任务的网络来做第二个任务. 为了不忘记之 ...

  7. 论文笔记—Flattened convolution neural networks for feedforward acceleration

    1. 论文思想 一维滤过器.将三维卷积分解成三个一维卷积.convolution across channels(lateral), vertical and horizontal direction ...

  8. 读convolutional Neural Networks Applied to House Numbers Digit Classification 的收获。

    本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classificati ...

  9. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

随机推荐

  1. [mysql]Date和String相互转换(DATE_FORMAT&STR_TO_DATE)

    1.Date  ——>  String 使用的函数:DATE_FORMAT(date,format)     date:需要转换的日期       format:格式化的样式 format样式整 ...

  2. [protocol]GO enrichment analysis

    [protocol]GO enrichment analysis     背景: 什么是富集分析,自己可以百度.我到目前也没发现一个比较通俗易懂的介绍.直接理解为一种统计学方法就可以了. 用于查看显著 ...

  3. numpy.random随机数生成

    seed 确定随机数生成器的种子 permutation 返回一个序列的随机排列或返回一个随机排列的返回 shuffle 对一个序列就地随机乱序 rand 产生均匀分布的样本值 randint 从给定 ...

  4. flask 在模板中渲染表单

    在模板中渲染表单 为了能够在模板中渲染表单,我们需要把表单类实例传入模板.首先在视图函数里实例化表单类LoginForm,然后再render_template()函数中使用关键脑子参数form将表单实 ...

  5. python深拷贝和浅拷贝的区别

    首先深拷贝和浅拷贝都是对象的拷贝,都会生成一个看起来相同的对象,他们本质的区别是拷贝出来的对象的地址是否和原对象一样,也就是地址的复制还是值的复制的区别. 什么是可变对象,什么是不可变对象: 可变对象 ...

  6. 2017-2018-2 20165215 实验四《Android开发基础》实验报告

    2017-2018-2 20165215 实验四<Android开发基础>实验报告 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:张家佳 学号:20165215 指导教 ...

  7. centos 文件新建、删除、移动、复制等命令

    创建目录 mkdir 文件名 mkdir /var/www/test cp复制命令 cp命令复制文件从一个位置到另一位置.如果目的地文件存在,将覆复写该文件: 如果目的地目录存在,文件将复制到该目录下 ...

  8. github开源的一些ip解析 ,运营商信息,经纬度 地址 后续开发使用

    https://github.com/wzhe06/ipdatabase  ip解析 https://github.com/flyaction/ipdatabase 比较新 https://githu ...

  9. sass中的循环判断条件语句

    @if $lte7:true !default;//是否兼容ie6,7 //inline-block //ie6-7 *display: inline;*zoom:1; @mixin inline-b ...

  10. Service_name 和Sid的区别

    Service_name:该参数是由oracle8i引进的.在8i以前,使用SID来表示标识数据库的一个实例,但是在Oracle的并行环境中,一个数据库对应多个实例,这样就需要多个网络服务名,设置繁琐 ...