洛谷 P4427 求和
传送门啦
思路:
开始不肿么容易想到用倍增,但是想到需要求 $ Lca $ ,倍增这种常数小而且快的方法就很方便了。求 $ Lca $ 就是一个最普通的板子。那现在考虑怎么求题目中的结果。
树上差分可能听起来很高大上,但是前缀和并不陌生,树上差分就理解成树上前缀和就好了:
$ sum[u] + sum[v] - sum[lca(u , v)] ; $
树上差分之前要先预处理出 $ dis $ 数组, $ dis[i][j] $ 表示从 $ i $ 出发到根节点(本题中的1号节点)的 $ j $ 次方。
for(re long long j = 1 ; j <= 50 ; ++ j)
dis[x][j] = dis[fa][j] + quick_power(dep[x] , j) ;
这就是预处理的代码了, $ dep $ 表示深度 , $ quick - power $ 为快速幂。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#define re register
using namespace std ;
const long long maxn = 300005 ;
const long long mod = 998244353 ;
inline long long read () {
long long f = 1 , x = 0 ;
char ch = getchar () ;
while(ch > '9' || ch < '0') {if(ch == '-') f = -1 ; ch = getchar () ;}
while(ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0' ; ch = getchar () ;}
return x * f ;
}
inline void print (long long x){
if(x < 0) {putchar('-') ; x = -x ;}
if(x > 9) print(x / 10) ;
putchar(x % 10 + '0') ;
}
long long n , x , y , m , a , b , c ;
long long head[maxn] , tot ;
long long ans ;
struct Edge {
long long from , to , next ;
}edge[maxn << 1] ;
inline void add (long long u , long long v) {
edge[++tot].from = u ;
edge[tot].to = v ;
edge[tot].next = head[u] ;
head[u] = tot ;
}
long long quick_power (long long a , long long b) {
long long res = a , ans = 1 ;
while(b) {
if(b & 1) ans = ans * res % mod ;
res = res * res % mod ;
b >>= 1 ;
}
return ans % mod ;
}
long long dep[maxn] , f[maxn][21] , dis[maxn][51];
inline void dfs (long long x , long long fa) {
dep[x] = dep[fa] + 1 ;
f[x][0] = fa ;
for(re long long j = 1 ; j <= 50 ; ++ j)
dis[x][j] = dis[fa][j] + quick_power(dep[x] , j) ;
for(re long long i = 1 ; (1 << i) <= dep[x] ; ++ i) {
f[x][i] = f[f[x][i - 1]][i - 1] ;
}
for(re long long i = head[x] ; i ; i = edge[i].next) {
long long v = edge[i].to ;
if(v != fa) dfs(v , x) ;
}
}
inline long long lca (long long a , long long b) {
if(dep[a] < dep[b]) swap(a , b) ;
for(re long long i = 20 ; i >= 0 ; -- i) {
if((1 << i) <= (dep[a] - dep[b]) ) {
a = f[a][i] ;
}
}
if(a == b) return a ;
for(re long long i = 20 ; i >= 0 ; -- i) {
if((1 << i) <= dep[a] && (f[a][i] != f[b][i])) {
a = f[a][i] ;
b = f[b][i] ;
}
}
return f[a][0] ;
}
int main () {
n = read () ;
for(re long long i = 1 ; i <= n - 1 ; ++ i) {
x = read () ; y = read () ;
add(x , y) ;
add(y , x) ;
}
dep[1] = -1 ;
dfs(1 , 1) ;
m = read () ;
for(re long long i = 1 ; i <= m ; ++ i) {
a = read () ; b = read () ; c = read () ;
long long root = lca(a , b) ;
ans = (dis[a][c] - dis[root][c] + dis[b][c] - dis[f[root][0]][c]) % mod ;
//printf("%d %d %d %d\n" , dis[a][c] , dis[b][c] , dis[root][c] , quick_power(dep[root] , c) % mod ) ;
print(ans) ;
printf("\n") ;
}
return 0 ;
}
洛谷 P4427 求和的更多相关文章
- 洛谷 P4427
传送门 洛谷P4427 题意: 给你一个数,然后让你求这两个数之间的点的深度的k次方和. #思路: 很容易想到lca.因为lca可以说是求树上两个点的距离的好方法.而且lca还能遍历每一个点. 然后我 ...
- 洛谷P4427 [BJOI2018]求和
\(\Large\textbf{Description: } \large{一颗n个节点的树,m次询问,每次查询点i到点j的路径上所有节点点深度的k次方的和并对998244353取模(1\leq n, ...
- 洛谷 P2671 求和 解题报告
P2671 求和 题目描述 一条狭长的纸带被均匀划分出了\(n\)个格子,格子编号从\(1\)到\(n\) .每个格子上都染了一种颜色\(color_i\)用\([1,m]\)当中的一个整数表示),并 ...
- 洛谷P2671 求和 [数论]
题目传送门 求和 格式难调,题面就不放了. 分析: $ZYYS$的一道题. 很显然是大力推公式.我们分析一下题目,实际上限制条件就是:下标同奇偶且颜色相同的数,那么我们先拿这个公式$(x+z)*(nu ...
- 洛谷——P1630 求和
P1630 求和 题目描述 求1^b+2^b+……+a^b的和除以10000的余数. 输入输出格式 输入格式: 第一行包含一个正整数N,表示共有N组测试数据: 接下来N行,每行包含两个正整数a和b. ...
- 洛谷 P2671 求和
题目描述 一条狭长的纸带被均匀划分出了nn个格子,格子编号从11到nn.每个格子上都染了一种颜色color\_icolor_i用[1,m][1,m]当中的一个整数表示),并且写了一个数字number\ ...
- [洛谷2671]求和<前缀和&模拟>
题目链接:https://www.luogu.org/problemnew/show/P2671 这是noip2015普及组的第三题,谁说的普及组的题就一定水的不行,这道题就比较有意思的 这道题的暴力 ...
- NOIP2015 普及组 洛谷P2671 求和 (数学)
一道数学题...... 采用分组的思想,我们要统计答案的数对满足两个条件:同奇偶,同颜色.所以可以按这两个要求分组. 然后就是分组处理了,对于每组(有k个数),这里面的任意两对数都是满足条件的,可推出 ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
随机推荐
- DOM表格操作
注意:就算代码中不包含<tbody>标签,浏览器解析时也可能会自动添加,因此需要注意子元素的选择 表格操作用到的属性: 1.tHead 2.tBodies 3.tFoot 更为细致的有: ...
- Docker:搭建RabbitMQ集群
RabbitMQ原理介绍(一) RabbitMQ安装使用(二) RabbitMQ添加新用户并支持远程访问(三) RabbitMQ管理命令rabbitmqctl详解(四) RabbitMQ两种集群模式配 ...
- make_blobs
一.make_blobs简介 scikit中的make_blobs方法常被用来生成聚类算法的测试数据,直观地说,make_blobs会根据用户指定的特征数量.中心点数量.范围等来生成几类数据,这些数据 ...
- 标准遗传算法(二进制编码 python实现)
代码地址:https://github.com/guojun007/binary_sga 种群初始化: binary_sga/population_init/population_init.py #种 ...
- python---ORM之SQLAlchemy(5)联合唯一的使用
# coding:utf8 # __author: Administrator # date: // # /usr/bin/env python import sqlalchemy from sqla ...
- sublime 成对括号高亮显示设置
ctrl+shift+p/pcip(Package Control : Install Package)/ BracketHighlighter(括号高亮插件)
- springboot websocket 一篇足够了
什么是WebSocket WebSocket是一种在单个TCP连接上进行全双工通信的协议 … 为什么要实现握手监控管理 如果说,连接随意创建,不管的话,会存在错误,broken pipe 表面看单纯报 ...
- 使用rownum对oracle分页【原】
以Student表为例进行分页 建表及插入 -- 有表结构如下 create table STUDENT ( sno INTEGER, sname ), sage INTEGER ); -- 插入数据 ...
- 解决zabbix可用性为灰色状态
zabbix添加主机后,获取不到zabbix agent状态,并且图标为灰色,而在zabbix-server端使用zabbix_get可以正常获取到数据.在正常情况下应为绿色或红色. 问题原因,添加主 ...
- jdk8中奖Date转换为String格式的方法
public static String getLocalDateStr(Date date,String formatter) { DateTimeFormatter dateTimeFormatt ...