[JSOI2008]球形空间产生器 (高斯消元)
[JSOI2008]球形空间产生器

$ solution: $
非常明显的一道高斯消元。给了你n+1个球上的位置,我们知道球上任何一点到球心的距离是相等,所以我们
可以利用这一个性质。我们用n+1个球上的位置,两两组成n个等式(以距离为桥梁),将等式左右两边消元
即可得到n组多元方程,然后高斯消元即可!
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
const db cha=1e-9;
int n;
db a[13][13];
db g[13][13];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
inline void swap(db &x,db &y){db z=x;x=y;y=z;}
inline db fabs(db x){return x<0?-x:x;}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr();
for(rg i=1;i<=n+1;++i)
for(rg j=1;j<=n;++j)
scanf("%lf",&a[i][j]);
for(rg i=1;i<=n;++i){
for(rg j=1;j<=n;++j){
g[i][j]=(a[i+1][j]-a[i][j])*2;
g[i][n+1]+=a[i+1][j]*a[i+1][j]-a[i][j]*a[i][j];
}
}
for(rg i=1;i<=n;++i){
rg f=i;
for(rg j=i+1;j<=n;++j)
if(fabs(g[j][i])>fabs(g[f][i]))f=j;
if(f!=i)swap(g[i],g[f]);
for(rg j=1;j<=n;++j){
if(i==j)continue;
db tmp=g[j][i]/g[i][i];
for(rg k=i;k<=n+1;++k)
g[j][k]-=g[i][k]*tmp;
}
}
for(rg i=1;i<=n;++i)
printf("%.3lf ",g[i][n+1]/g[i][i]);
return 0;
}
[JSOI2008]球形空间产生器 (高斯消元)的更多相关文章
- BZOJ.1013.[JSOI2008]球形空间产生器(高斯消元)
题目链接 HDU3571 //824kb 40ms //HDU3571弱化版 跟那个一比这个太水了,练模板吧. //列出$n+1$个二次方程后两两相减,就都是一次方程了. #include <c ...
- 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...
- LG4035/BZOJ1013 「JSOI2008」球形空间产生器 高斯消元
问题描述 LG4035 BZOJ1013 题解 设答案为\((p_1,p_2,p_3,...,p_n)\) 因为是一个球体,令其半径为\(r\),则有 \[\sum_{i=1}^{n}{(a_i-p_ ...
- 【BZOJ1013】【JSOI2008】球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1600 Solved: 860[Submi ...
- BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元
1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...
- bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3584 Solved: 1863[Subm ...
- BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4846 Solved: 2525[Subm ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元
题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec 内 ...
随机推荐
- Nginx ACCESS阶段 如何限制IP访问
192.168.1.0/24(最大32位的子网掩码) 每个ip是8位 那么 24/8 = 3 也就是前三个二进制 是 11111111 11111111 11111111 是指子网掩码的位数.写的是多 ...
- Colored Sticks POJ - 2513(trie树欧拉路)
题意: 就是无向图欧拉路 解析: 不能用map..超时 在判断是否只有一个联通的时候,我比较喜欢用set,但也不能用set,会超时,反正不能用stl emm 用trie树来编号就好了 #include ...
- 第八届蓝桥杯国赛java B组第三题
标题:树形显示 对于分类结构可以用树形来形象地表示.比如:文件系统就是典型的例子. 树中的结点具有父子关系.我们在显示的时候,把子项向右缩进(用空格,不是tab),并添加必要的连接线,以使其层次关系更 ...
- 【HDU 1021】Fibonacci Again(找规律)
BUPT2017 wintertraining(16) #5 A HDU - 1021 题意 There are another kind of Fibonacci numbers: F(0) = 7 ...
- 【HDU1219】AC Me(水题)
BUPT2017 wintertraining(16) #4 A HDU1219 题意 多组样例,每组给一行,输出该行各字母个数,每组输出之间输出空行 代码 #include <cstdio&g ...
- Python Matplot中文显示完美解决方案
原因与现象 Matplot是一个功能强大的Python图表绘制库,很遗憾目前版本自带的字体库中并不支持中文字体.所以如果在绘制内容中需要显示中文,那么就会显示为方格字符. 解决办法 有一个较为完美的解 ...
- 自学Linux Shell3.6-文件查看命令file cat more less tail head
点击返回 自学Linux命令行与Shell脚本之路 3.6-文件查看命令file cat more less tail head 1.参看文件类型file 该命令用来识别文件类型,也可用来辨别一些文件 ...
- Arch Linux中禁用UTC解决双系统时间问题
原因 Windows双系统时间不统一在于时间表示有两个标准:localtime 和 UTC(Coordinated Universal Time) .UTC 是与时区无关的全球时间标准.尽管概念上有差 ...
- 我们一起来详细的了解react的语法以及组件的使用方法
jsx的介绍 React 使用 JSX 来替代常规的 JavaScript. JSX 是一个看起来很像 XML 的 JavaScript 语法扩展. jsx的优点 JSX 执行更快,因为它在编译为 J ...
- shopnc 手机网站配置
完整版SHOPNC下载地址:http://www.fenxiangweb.com/thread-7643-1-1.html SHOPNC手机wap版安装教程 1.进入根目录下mobile/readme ...