题意:每次插入一个数字,查询本质不同的子串有多少个

题解:sam,数字很大,ch数组用map来存,每次ins之后查询一下新建点表示多少个本质不同的子串(l[np]-l[fa[np]])

/**************************************************************
Problem: 4516
User: walfy
Language: C++
Result: Accepted
Time:804 ms
Memory:16600 kb
****************************************************************/ //#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=100000+10,inf=0x3f3f3f3f; char s[N];
ll ans=0;
struct SAM{
int last,cnt;
int fa[N<<1],l[N<<1];
map<int,int>ch[N<<1];
int c[N<<1],a[N<<1];
void ins(int c){
int p=last,np=++cnt;last=np;l[np]=l[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else
{
int q=ch[p][c];
if(l[p]+1==l[q])fa[np]=q;
else
{
int nq=++cnt;l[nq]=l[p]+1;
ch[nq]=ch[q];
// memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
ans+=1ll*(l[np]-l[fa[np]]);
}
void build(){
last=cnt=1;
}
}sam;
int main()
{
sam.build();
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;scanf("%d",&x);
sam.ins(x);
printf("%lld\n",ans);
}
return 0;
}
/******************** ********************/

bzoj4516: [Sdoi2016]生成魔咒 sam的更多相关文章

  1. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  2. [Sdoi2016]生成魔咒[SAM or SA]

    4516: [Sdoi2016]生成魔咒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 569[Submit][Statu ...

  3. [bzoj4516][Sdoi2016]生成魔咒——后缀自动机

    Brief Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生 ...

  4. BZOJ4516 [Sdoi2016]生成魔咒 【后缀自动机】

    题目 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2, ...

  5. BZOJ4516: [Sdoi2016]生成魔咒

    果然SA比SAM+map快~加了fread目前rank1. 首先这是SAM裸题,然而SA求本质不同子串个数也很容易.考虑倒着建SA,这样没错加一个字符就变成加一个后缀,其他后缀都不变,那么i的答案就是 ...

  6. BZOJ4516 SDOI2016生成魔咒(后缀数组+平衡树)

    一个字符串本质不同的子串数量显然是总子串数减去所有height值.如果一个个往里加字符的话,每次都会改动所有后缀完全没法做.但发现如果从后往前加的话,每次只会添加一个后缀.于是我们把字符串倒过来,每次 ...

  7. 2018.12.23 bzoj4516: [Sdoi2016]生成魔咒(后缀自动机)

    传送门 samsamsam入门题. 题意简述:给出一个串让你依次插入字符,求每次插入字符之后不同子串的数量. 显然每次的变化量只跟新出现的nnn个后缀有关系,那么显然就是maxlenp−maxlenl ...

  8. bzoj千题计划283:bzoj4516: [Sdoi2016]生成魔咒(后缀数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4516 考虑在后面新加一个字母产生的影响 假设是第i个 如果不考虑重复,那么会增加i个不同的字符串 考 ...

  9. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

随机推荐

  1. 论文阅读:Videos as Space-Time Region Graphs

    Videos as Space-Time Region Graphs ECCV 2018 Xiaolong Wang 2018-08-03 11:16:01 Paper:arXiv 本文利用视频中时空 ...

  2. UVA 10870 Recurrences(矩阵乘法)

    题意 求解递推式 \(f(n)=a_1*f(n-1)+a_2*f(n-2)+....+a_d*f(n-d)\) 的第 \(n\) 项模以 \(m\). \(1 \leq n \leq 2^{31}-1 ...

  3. sql注入解析

    sql注入解析 sql注入解析(一)基本语法 sql注入解析(二)执行注入 sql注入解析(三)数据库类型 sql注入解析(四)避开过滤

  4. P1182 数列分段`Section II`

    传送门 思路: 求数列每段和的最大值的最小值,很明显是用二分法求解,加贪心检验.本题关键是要怎么去高效的check,可以考虑一个贪心的思路,能加的就加上,不能则新开一段,so对于二分的值 u ,我们从 ...

  5. pom中配置的仓库无效的问题

    今天在用spring cloud的时候发现,配置的pom仓库一直无效(官网要求2.0版本直接从指定仓库里下).于是上网搜索,发现(http://18810098265.iteye.com/blog/2 ...

  6. python3 items() 与 python2 中iteritems()的区别

    在Python2.x中, iteritems() 用于返回本身字典列表操作后的迭代 Python 3.x 里面, iteritems() 方法已经废除了,而 items() 得到的结果是和 2.x 里 ...

  7. 设计模式(四) Factory Pattern工厂模式

    核心: 实例化对象,实现创建者和调用者的分离 简单工厂模式 工厂方法模式 抽象工厂模式 面对对象设计的基本原则: ocp(open closed principle) 开闭原则:一个软件的实体应当对拓 ...

  8. isnull和sum的关系

    这是我刚刚写存储过程的时候意识到的一个问题!!! 先问大家这样一个问题,print 100+null  等于多少? 在一组数据统计的过程中,只要使用到sum函数,就必须使用isnull函数包含起来,因 ...

  9. [转][c++][跨平台]c++跨平台开发小结

    转自:https://blog.csdn.net/dj0379/article/details/53577135 linux编程与windows编程的差异之处: 1. 文件与目录的大小写以及路径分隔符 ...

  10. Java学习必备书籍推荐终极版!

    Java 基础 <Head First Java>(推荐,豆瓣评分 8.7,1.0K+人评价): 可以说是我的 Java 启蒙书籍了,特别适合新手读当然也适合我们用来温故 Java 知识点 ...