bzoj 4487: [Jsoi2015]染色问题
先贴一个题解吧,最近懒得要死2333,可能是太弱的原因吧,总是扒题解,(甚至连题解都看不懂了),blog也没更新,GG
http://blog.csdn.net/werkeytom_ftd/article/details/52527740
容斥原理真的很神奇233
#include <bits/stdc++.h>
#define LL long long
using namespace std; const int maxn=;
const int mod=1e9+; int fac[maxn],inv[maxn];
void pre()
{
fac[]=; for (int i=; i<=; i++) fac[i]=(LL)fac[i-]*i%mod;
inv[]=inv[]=;
for (int i=; i<=; i++) inv[i]=(LL)(mod-mod/i)*inv[mod%i]%mod;
for (int i=; i<=; i++) inv[i]=(LL)inv[i]*inv[i-]%mod;
}
int ksm(int x, int p)
{
int sum=;
for (;p;p>>=,x=(LL)x*x%mod)
if (p&) sum=(LL)sum*x%mod;
return sum;
}
int C(int n, int m)
{
return (LL)fac[n]*inv[m]%mod*inv[n-m]%mod;
} int n,m,p,ans;
int main()
{
cin>>n>>m>>p; pre();
for (int i=; i<=n; i++)
for (int k=; k<=p; k++)
{
int qwq=(LL)C(n,i)*C(p,k)%mod;
int orz=ksm((-ksm(k+,i)+mod)%mod,m);
qwq=(LL)qwq*orz%mod;
if ((n+m+p-i-k)&) qwq=-qwq;
ans=(ans+qwq)%mod;
}
printf("%d\n",(ans+mod)%mod);
return ;
}
bzoj 4487: [Jsoi2015]染色问题的更多相关文章
- bzoj4487[Jsoi2015]染色问题 容斥+组合
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 211 Solved: 127[Submit][Status ...
- 【BZOJ4487】[JSOI2015]染色问题(容斥)
[BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...
- BZOJ 5306 [HAOI2018] 染色
BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...
- BZOJ4487 [Jsoi2015]染色问题
BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(- ...
- BZOJ 2243: [SDOI2011]染色 [树链剖分]
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6651 Solved: 2432[Submit][Status ...
- bzoj 4033 树上染色 - 树形动态规划
有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑 色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的 ...
- 洛谷 P2486 BZOJ 2243 [SDOI2011]染色
题目描述 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221” ...
- [bzoj4487][Jsoi2015]染色_容斥原理
染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的 ...
- bzoj 2243 [SDOI2011]染色(树链剖分,线段树)
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4637 Solved: 1726[Submit][Status ...
随机推荐
- PyQt5操作SQLite数据库
1.操作SQLite数据库import sysfrom PyQt5.QtSql import QSqlDatabase,QSqlQueryfrom PyQt5.QtCore import * def ...
- Spring Boot 学习前你应该知道的 Maven 知识
Maven 是什么? 回答这个问题,我们先来了解下没有Maven,我们是怎么使用开发者工具IDE去开发Java程序的.我之前开发Java程序不多,但是我还是记得,我是从网上下载或从合作方拷贝 jar ...
- POJ3662 Telephone Lines (dijkstra+二分)
Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncoop ...
- 2016-2017学年第三次测试赛 习题H MCC的考验
问题 H: MCC的考验 时间限制: 1 Sec 内存限制: 128 MB 题目描述 MCC男神听说新一期的选拔赛要开始了,给各位小伙伴们带来了一道送分题,如果你做不出来,MCC会很伤心的. 给定一 ...
- Java面向对象编程 -1.5
对象引用传递分析 类本身属于引用传递类型,既然是引用传递类型,那么就牵扯到内存的引用传递 所谓的引用传递的本质:同一块堆内存空间可以被不同的栈内存所指向,也可以更换指向. class Person{ ...
- 【PAT甲级】1054 The Dominant Color (20 分)
题意: 输入两个正整数M和N(M<=800,N<=600),分别代表一张图片的宽度和高度,接着输入N行每行包括M个点的颜色编号,输出这张图片主导色的编号.(一张图片的主导色占据了一半以上的 ...
- 【摘录自MDN】预定义函数
JavaScript语言有好些个顶级的内建函数: eval() eval()方法会对一串字符串形式的JavaScript代码字符求值. uneval() uneval()方法创建的一个Object的 ...
- MRCP接口MRCPRecog 简介
功能:开始一个语音识别,一边讲话,一边识别,需要ASR服务器. 原型:MRCPRecog (grammar, options) grammar ---- 语法文件,可以是一个xml文件 options ...
- 1146. Snapshot Array
Implement a SnapshotArray that supports the following interface: SnapshotArray(int length) initializ ...
- Unity的3种消息传递方法(SendMessage等)
为了方便多个物体间的消息传达与接收,Unity中包含了几种消息推送机制 : 分别为SendMessage.SendMessageUpwards.BroadcastMessage. 我们首先以SendM ...