Luogu P5603 小C与桌游【贪心+拓扑排序】
【Description】https://www.luogu.com.cn/problem/P5603
\(\;\)
题意可以简化为:一个不保证联通,n个点,m条边的DAG(有向无环图),构造一个拓扑序S。
求:\(\sum_{i=1}^n f(i)\)的\(Max,Min\)
其中\(f(i)\)的定义:
\begin{cases}
1\;\;\;\;S(1\;to\;i-1)<S(i) \\
0\;\;\;\;other
\end{cases}
\]
【Sample Input】
3 2
1 2
1 3
【Sample Output】
3
2
\(\;\)
\(\;\)
先考虑\(Max\)?
假设现在所有入度为0的点组成的集合为\(\{S_1,S_2,\cdots,S_k \;\;\;\}\;(S_1<S_2<\cdots <S_k)\)
可以贪心地考虑,目前选择\(S_1\)是最优的。
感性证明?
假设我们选择了\(S_r\),则\(S_1,\cdots,S_{r-1}\)在以后一定不会对答案产生贡献了。
而我们选择\(S_r\)唯一的好处就是:\(S_r\)可能是目前我们已选择中的最大值,会产生1的贡献
那我们完全可以先选择一个比\(S_r\)小的数\(S_p\),这样\(S_p\)也有可能产生贡献,而对\(S_r\)的是否贡献没有影响,会更优。
用一个优先队列(小根堆)实现即可。
\(\;\)
\(\;\)
考虑\(Min\)
接着上面的思路?
选择\(S_k\)是不是最优的?
举个反例:

在这个例子中,按照原先的思路是3-4-1-5,答案为3。
而选择3-1-5-4,答案为2。显然更优。
所以我们得到一个新的思路,只要有小于目前最大值的,就选,否则选最大的那一个。
感性证明?
因为小于目前最大值的点不管什么时候,都不会对答案产生贡献了,所以我们先把它们选了再说。
而这样的好处就是:可以扩展出更多的点,这样就更容易创造一个更优的方法。
例子中:选了1后,我们扩展到了5这个点,就可以使4不产生贡献。
否则如果我们不选1的话,只能选择4,这样可能导致不是最优解。
\(\;\)
\(Code:\)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int N=500010;
int n,m,ind[N],bind[N];
vector<int> g[N];
priority_queue<int> q;
priority_queue<int,vector<int>,greater<int> > Q;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
g[u].push_back(v);
ind[v]++;
}
for(int i=1;i<=n;i++)
{
bind[i]=ind[i];
if(!ind[i])
{
Q.push(i);
}
}
int maxn=0,res1=0,res2=0;
while(!Q.empty())
{
int u=Q.top(); Q.pop();
if(u>maxn)
{
res1++;
maxn=u;
}
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!(--ind[v]))
{
Q.push(v);
}
}
}
printf("%d\n",res1);
for(int i=1;i<=n;i++)
{
if(!bind[i])
{
q.push(i);
}
}
while(!q.empty())
{
while(!q.empty())
{
int u=q.top();
q.pop();
if(u>maxn)
{
res2++;
maxn=u;
}
tt.push(u);
}
while(!tt.empty())
{
int u=tt.front();
tt.pop();
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!(--bind[v]))
{
if(v<maxn)
{
tt.push(v);
}
else q.push(v);
}
}
}
}
printf("%d",res2);
return 0;
}
Luogu P5603 小C与桌游【贪心+拓扑排序】的更多相关文章
- [POI2004] SZP (贪心+拓扑排序)
[问题描述] Byteotian 中央情报局(BIA) 雇佣了许多特工. 他们每个人的工作就是监视 另一名特工. Byteasar 国王需要进行一次秘密行动,所以他要挑选尽量多的信得过的特工. 但 是 ...
- hdu-5695 Gym Class(贪心+拓扑排序)
题目链接: Gym Class Time Limit: 6000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- Aizu 2456 Usoperanto 贪心 拓扑排序
Usoperanto Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/contest_show.php?cid= ...
- poj 3687 Labeling Balls - 贪心 - 拓扑排序
Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them with 1 to N ...
- 2016"百度之星" - 初赛(Astar Round2A)1006 Gym Class(HDU5695)——贪心+拓扑排序
分析:首先,利用贪心可知,如果要所有人的分数和最高,需要把序号大的优先放在前面.其次,对于a的前面不能为b,那么只能a在b前面了,那么就建立一条从a到b的边,并且b的入度加1.然后就是拓扑排序了.要分 ...
- Berland Army CodeForces - 883B (贪心,拓扑排序)
大意: n个点, 点$i$的等级为$r_i$, 只给出部分点的$r$值, $r_i$的范围为[1,k], 且[1,k]都至少有一个. 给定m条有向边, (x,y)表示$r[x]>r[y]$, 求 ...
- 「Luogu P5603」小O与桌游
题目链接 戳我 \(Solution\) 我们来分析题目. 实际上就是求一个拓扑序满足拓扑序的前缀最大值最多/最少 对于第一种情况,很明显一直选当前能选的最小的是最优的对吧.因为你需要大的尽可能多.用 ...
- Luogu P3065 [USACO12DEC]第一!First!【字典树/拓扑排序】By cellur925
题意:给你许多字符串,你可以改变字母序大小,问有哪些字符串可能成为字典序最小的字符串. 我们考虑把这些字符串都塞到\(trie\)树上.之后检索每一个字符串的时候,我们看和他同一层的地方是否有字符,如 ...
- 贪心+拓扑排序 AOJ 2456 Usoperanto
题目传送门 题意:给出一条链,比如x连到y,x一定要在y的左边,且代价是这条链经过的点的权值和,问如何排序使得代价最小 分析:类似拓扑排序,先把入度为0的点入队,把指向该点的所有点按照权值排序,保证这 ...
随机推荐
- Linux下nginx自启动配置
1.在linux系统的/etc/init.d/目录下创建nginx文件 vim /etc/init.d/nginx 在脚本中添加一下命令(内容主要参考官方文档) #!/bin/sh # # nginx ...
- billu b0x2靶机渗透
实战渗透靶机billu b0x2 攻击kali :192.168.41.147 靶机b0x2: 192.168.41.148 起手先nmap扫了一下 扫到了四个开放的端口,有ssh,http,rpcb ...
- 详解PHP反序列化中的字符逃逸
首发先知社区,https://xz.aliyun.com/t/6718/ PHP 反序列化字符逃逸 下述所有测试均在 php 7.1.13 nts 下完成 先说几个特性,PHP 在反序列化时,对类中不 ...
- webpack之Loader
我们知道webpack的优点之一就是专注于处理模块化的项目,能做到开箱即用,但同时这也是webpack的缺点,只能用于模块化开发的项目,例如:Vue,React,Angular.Webpack在进行打 ...
- gloo基本知识
Architechture(架构) Gloo通过Envoy XDS gRPC API来动态更新Envoy配置, 更方便的控制Envoy Proxy, 并保留扩展性..本质是一个Envoy xDS配置翻 ...
- bm25算法和tfidf
- pytorch Model Linear实现线性回归CUDA版本
实验代码 import torch import torch.nn as nn #y = wx + b class MyModel(nn.Module): def __init__(self): su ...
- shift count is too large
STM8S是8 bit单片机在STM8S中 unsigned long是32位, unsigned short和unsigned int都是16位,unsigned char是8位. 以以下代码编译时 ...
- PHP使用token防止表单重复提交的方法
本文实例讲述了PHP使用token防止表单重复提交的方法.分享给大家供大家参考,具体如下: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 ...
- Dockerfle创建镜像
简介 Dockerfile 由一行行命令语句组成,并且支持以 # 开头的注释行. 一般的,Dockerfile 分为四部分:基础镜像信息.维护者信息.镜像操作指令和容器启动时执行指令. # This ...