设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下:

①设lcm * x + ans为前n个同余方程组的解,lcm * x + ans一定能满足前n - 1个同余方程;

②第 n 个同余方程可以转化为a[n] * y + b;

合并①②得:lcm * x + ans = a[n] * y + b; => lcm * x - a[n] * y = b - ans(可以用拓展欧几里得求解x和y)

但是拓展欧几里得要求取余的数是正数,我们可以转化上面的方程为lcm * x + a[n] * -y = b - ans(后面我们用x得到解,所以不关心y的正负)

解得一组x和y;

x += k * (a[n] / gcd);(k为任意整数)

我们可以求得最小非负数x,在带入①得到前n个同余方程的最小非负数解;

代码如下:

Accepted 3579 15MS 1368K 1112 B G++
#include "bits/stdc++.h"
using namespace std;
int a[], b[];
// 拓展欧几里得C++模板
int ex_gcd(int a, int b, int &x, int &y) {
if (b == ) {
x = ;
y = ;
return a;
}
int ans = ex_gcd(b, a % b, y, x);
y -= a / b * x;
return ans;
}
int solve(int n) {
// 任何数对1取余都是0,所以初始化ans = 0, lcm = 1;
int x, y, ans = , lcm = ;
for (int i = ; i < n; i++) {
int gcd = ex_gcd(lcm, a[i], x, y);
if ((b[i] - ans) % gcd) {
return -;
}
// 拓展欧几里得求得的x和y是对于gcd而言的。乘完之后才是对于 (b[i] - ans) 的 x
x *= (b[i] - ans) / gcd;
a[i] /= gcd;
// 使 x 成为最小非负数解
x = (x % a[i] + a[i]) % a[i];
// 更新ans
ans += x * lcm;
// 更新lcm
lcm *= a[i];
}
// 本题要求最小正整数解,如果ans是0,要加一个最小公倍数也就是lcm
return ans ? ans : lcm;
}
int main() {
int t, n, ca = ;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
for (int i = ; i < n; i++) {
scanf("%d", &a[i]);
}
for (int i = ; i < n; i++) {
scanf("%d", &b[i]);
}
printf("Case %d: %d\n", ca++, solve(n));
}
return ;
}

HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)的更多相关文章

  1. 【hdu3579-Hello Kiki】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=3579 题解:同余方程组的裸题.注意输出是最小的正整数,不包括0. #include<cstdio> ...

  2. 【poj2891-Strange Way to Express Integers】拓展欧几里得-同余方程组

    http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓 ...

  3. 【hdu1573-X问题】拓展欧几里得-同余方程组

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 求小于等于N的正整数中有多少个X满足: X mod a0 = b0 X mod a1 = b1 …… X  ...

  4. hdu 1576 A/B(拓展欧几里得)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. ZOJ Problem Set - 3593 拓展欧几里得 数学

    ZOJ Problem Set - 3593 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593 One Person ...

  7. BZOJ-1407 Savage 枚举+拓展欧几里得(+中国剩余定理??)

    zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可 ...

  8. 【lydsy1407】拓展欧几里得求解不定方程+同余方程

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...

  9. NOIP2012拓展欧几里得

    拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...

随机推荐

  1. java设计模式--六大原则

    一.单一职责原则 单一职责原则:就一个类而言,应该仅有一个引起它变化的原因.通俗来说,就是互相不相关的属性和方法不要放在一个类中,就好比之前简单工厂模式中介绍的那样,客户端(Customer)应该与工 ...

  2. (一)ORBSLAM2主要配置

    (1)ORBSLAM2文件夹里面有个build.sh文件,里面主要是编译时终端需要执行的命令,这里把它们放到.sh文件中统一执行. (2)阅读ORBSLAM2的CmakeList可以知道运行ORBSL ...

  3. 备战秋招——C++知识点

    1.字符串的末尾'\0'也算一个字符,一个字节. 2.使用库函数strcpy(a,b)进行拷贝b->a操作,strcpy会从源地址一直往后拷贝,直到遇到'\0'为止.所以拷贝的长度是不定的.如果 ...

  4. 吴裕雄--天生自然 JAVA开发学习:String 类

    public class StringDemo{ public static void main(String args[]){ char[] helloArray = { 'r', 'u', 'n' ...

  5. python计算网络借贷和分期的年利率

    一.现金分期年利率 现在很多人都有使用网上借贷,动不动就消费分期.经过了解很多对贷款利率有一些误解,粗看觉得产生的利息也不是很高,但是年化利率到第是多少,这里面的玩法是怎样的呢. 拿某个借贷平台举例, ...

  6. day63-html-列表,表格,标签的嵌套规则

    1.列表 1.无序列表 <ul type="disc"> <li>a</li> <li>b</li> </ul&g ...

  7. Redis--初识Redis

    Redis 是一个远程内存数据库,它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的数据模型.Redis 提供了 5 种不同类型的数据结构,各式各样的问题都可以很自然的映射到这些数据结构 ...

  8. NOIp2018RP++

    NOIp2018RP++ Rp=0 while True: Rp+=1; print (Rp)

  9. 2017年3月16工作日志【mysql更改字段参数、java8 map()调用方法示例】

    修改某个表的字段类型及指定为空或非空 >alter table 表名称 change 字段名称 字段名称 字段类型 [是否允许非空],变更字段名称及属性 >alter table 表名称 ...

  10. js时间与日期

    var box = new Date(); //创建了一个日期对象:构造方法里面可以传参数,指定时间.如果没有传,就是默认当前时间alert(box); alert(Date.parse('4/12/ ...