TensorFlow keras卷积神经网络 添加L2正则化
model = keras.models.Sequential([
#卷积层1
keras.layers.Conv2D(32,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)),
#池化层1
keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
#卷积层2
keras.layers.Conv2D(64,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu),
#池化层2
keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
#数据整理
keras.layers.Flatten(),
#1024个,全连接层
keras.layers.Dense(1024,activation=tf.nn.relu),
#100个,全连接层
keras.layers.Dense(100,activation=tf.nn.softmax)
])
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from tensorflow.python.keras.datasets import cifar100
from tensorflow.python import keras
import tensorflow as tf class CNNMnist(object): model = keras.models.Sequential([
#卷积层1
keras.layers.Conv2D(32,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)),
#池化层1
keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
#卷积层2
keras.layers.Conv2D(64,kernel_size=5,strides=1,padding="same",data_format="channels_last",activation=tf.nn.relu),
#池化层2
keras.layers.MaxPool2D(pool_size=2,strides=2,padding="same"),
#数据整理
keras.layers.Flatten(),
#1024个,全连接层
keras.layers.Dense(1024,activation=tf.nn.relu),
#100个,全连接层
keras.layers.Dense(100,activation=tf.nn.softmax)
]) def __init__(self):
(self.x_train,self.y_train),(self.x_test,self.y_test) = cifar100.load_data() self.x_train = self.x_train/255.0
self.x_test = self.x_test/255.0 def compile(self):
CNNMnist.model.compile(optimizer=keras.optimizers.Adam(),loss=keras.losses.sparse_categorical_crossentropy,metrics=["accuracy"]) def fit(self):
CNNMnist.model.fit(self.x_train,self.y_train,epochs=1,batch_size=32) def evaluate(self):
test_loss,test_acc = CNNMnist.model.evaluate(self.x_test,self.y_test)
print(test_loss,test_acc) if __name__ == '__main__':
cnn = CNNMnist()
print(CNNMnist.model.summary())
cnn.compile()
cnn.fit()
TensorFlow keras卷积神经网络 添加L2正则化的更多相关文章
- TensorFlow实现卷积神经网络
1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...
- 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结
折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...
- tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...
- TensorFlow构建卷积神经网络/模型保存与加载/正则化
TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...
- Python之TensorFlow的卷积神经网络-5
一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...
- 【Python】keras卷积神经网络识别mnist
卷积神经网络的结构我随意设了一个. 结构大概是下面这个样子: 代码如下: import numpy as np from keras.preprocessing import image from k ...
- tensorflow 中的L1和L2正则化
import tensorflow as tf weights = tf.constant([[1.0, -2.0],[-3.0 , 4.0]]) >>> sess.run(tf.c ...
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- Tensorflow之卷积神经网络(CNN)
前馈神经网络的弊端 前一篇文章介绍过MNIST,是采用的前馈神经网络的结构,这种结构有一个很大的弊端,就是提供的样本必须面面俱到,否则就容易出现预测失败.如下图: 同样是在一个图片中找圆形,如果左边为 ...
随机推荐
- POJ - 3255 SPFA+邻接表求次短路径
题意:给出m条边 , n个顶点,u [ i ]到v [ i ] 的距离w [ i ],求除了最短路的那条最短的边的长度. 思路:之前有做过相似的题,使用迪杰斯特拉算法求单源最短路径,并且记录路径,枚举 ...
- HOOK相关原理与例子
消息HOOK 原理: 1. 用户输入消息,消息被放到系统消息队列. 2. 程序发生了某些需要获取输入的事件,就从系统消息队列拿出消息放到程序消息队列中. 3. 应用程序检测到有新的消息进入到程序消息队 ...
- 树莓派 Raspberry PI基础
树莓派 Raspberry PI基础 官网网址:https://www.raspberrypi.org 下载地址:https://www.raspberrypi.org/downloads/ 官方系统 ...
- 关于 IDEA 启动 springboot 项目异常 - Disconnected from the target VM, address: '127.0.0.1:59770', transport: 'socket'
关于 IDEA 启动 springboot 项目异常 - Disconnected from the target VM, address: '127.0.0.1:59770', transport: ...
- Spring Cache 缺陷,我好像有解决方案了
Spring Cache 缺陷 Spring Cache 是一个非常优秀的缓存组件. 但是在使用 Spring Cache 的过程当中,小黑同学也遇到了一些痛点. 比如,现在有一个需求:通过多个 us ...
- 微信小程序生成带参数的二维码(小程序码)独家asp.net的服务端c#完整代码
一)我先用的小程序端的wx.request去调用API,发现竟然是一个坑! wx.request({ url: 'https://api.weixin.qq.com/wxa/getwxacodeunl ...
- A 皮呵德
时间限制 : 5000 MS 空间限制 : 262144 KB 问题描述 Eyiz正在与邪恶的Dgdon战斗. 为了打败Dgdon,Eyiz决定召唤PhantasmDragon来帮助他. 但是,召 ...
- 使用Putty + Xming 远程登录Linux显示图形化界面
一般我们远程登录linux 服务器,都是使用非加密的 telnet 或者加密的 ssh.这些登录方式有一个特点:只能登录字符界面,不能运行那些带有GUI界面的程序. 有时候为了学习或者工作的需要,我们 ...
- python中使用163邮箱发送邮件一直报错的问题,谁能解决(已经各种百度完了,没能解决问题)
1.报错如下: 2.代码如下:
- 本地代码上传到git仓库(github)
准备:拥有自己的github账号:电脑上安装了git; 1.进入github,进入仓库点击NEW(新建仓库) 2.新建仓库 Repository name :仓库名称: Description (op ...