1、Matplotlib库简介

优秀的可视化第三方库

Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发

matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式

import matplotlib.pyplot as plt

(1)

import matplotlib.pyplot as plt
plt.plot([3,1,4,5,2])
plt.ylabel('grade')
plt.show()

plt.plot()只有一个输入列表或数组时,参数被当作Y轴,X轴以索引自动生成

(2)

import matplotlib.pyplot as plt
plt.plot([3,1,4,5,2])
plt.ylabel('grade')
plt.savefig('test_1',dpi=1000)
plt.show()

plt.savefig()将输出图形存储为文件,默认PNG格式,可以通过dpi修改输出质量

(3)

import matplotlib.pyplot as plt
plt.plot([0,2,4,6,8],[3,1,4,5,2])
plt.ylabel('grade')
plt.axis([-1,10,0,6])
plt.show()

plt.plot(x,y)当有两个以上参数时,按照X轴和Y轴顺序绘制数据点

plt.axis([a,b,c,d])坐标轴范围

2、pyplot的绘图区域

import numpy as np
import matplotlib.pyplot as plt def f(t):
return np.exp(-t)*np.cos(2*np.pi*t) a=np.arange(0,5,0.02) plt.subplot(211)
plt.plot(a,f(a)) plt.subplot(212)
plt.plot(a,np.cos(2*np.pi*a),'r--')#红色,虚线 plt.show()

3、pyplot的plot()函数

plt.plot(x, y, format_string, **kwargs)

x: x轴数据,列表或者数组,可选

y: y轴数据

format_string: 控制曲线的格式字符串,可选

**kwargs : 第二组或更多(x,y,format_string)

当绘制多条曲线时,各条曲线的x不能省略

import numpy as np
import matplotlib.pyplot as plt a=np.arange(0,5,0.2) plt.plot(a,a,'go-',a,1.5*a,'b-.',a,a*3,'yp') plt.show()

 

4、pyplot的中文显示

(1)pyplot并不默认支持中文显示,需要rcParams修改字体实现

import numpy as np
import matplotlib.pyplot as plt
import matplotlib matplotlib.rcParams['font.family']='STSong'
matplotlib.rcParams['font.size']=20 a=np.arange(0,5,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')#红色,虚线
plt.xlabel('横轴:时间')
plt.ylabel('横轴:时间')
plt.show()

(2)在有中文输出的地方,增加一个属性:fontproperties

import numpy as np
import matplotlib.pyplot as plt a=np.arange(0,5,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')#红色,虚线
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=20)
plt.ylabel('横轴:时间',fontproperties='SimHei')
plt.show()

5、pyplot文本显示

import numpy as np
import matplotlib.pyplot as plt a=np.arange(0,5,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')#红色,虚线
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=20)
plt.ylabel('横轴:时间',fontproperties='SimHei')
plt.title(r'正弦波实例$y=cos(2\pi x)$',fontproperties='SimHei')#转义符pi
plt.text(2,1,r'$\mu=100$',fontsize=15) plt.axis([-1,6,-2,2])
plt.grid(True)
plt.show()

import numpy as np
import matplotlib.pyplot as plt a=np.arange(0,5,0.02)
plt.plot(a,np.cos(2*np.pi*a),'r--')#红色,虚线
plt.xlabel('横轴:时间',fontproperties='SimHei',fontsize=20)
plt.ylabel('横轴:时间',fontproperties='SimHei')
plt.title(r'正弦波实例$y=cos(2\pi x)$',fontproperties='SimHei')#转义符
#plt.text(2,1,r'$u=100$',fontsize=15)
plt.annotate(r'$\mu=100$',xy=(2,1),xytext=(3,1.5),
arrowprops=dict(facecolor='black',shrink=0.1,width=2))#0.1是箭头两边的余量 plt.axis([-1,6,-2,2])
plt.grid(True)
plt.show()

6、pyplot的子绘图区域

(1)plt.subplot2grid()

plt.subplot2grid(GridSpec, CurSpec, colspan=1, rowspan=1)

理念:设定网格,选中网格,确定选中行列区域数量,编号从0开始

plt.subplot2grid((3,3), (1,0), colspan=2)

plt.subplot2grid((3,3), (0,0), colspan=3)#列延伸三个
plt.subplot2grid((3,3), (1,0), colspan=2)
plt.subplot2grid((3,3), (2,0), colspan=1)
plt.subplot2grid((3,3), (2,1), colspan=1)
plt.subplot2grid((3,3), (1,2), rowspan=2)#行延伸两个

(2)GridSpec类

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec gs=gridspec.GridSpec(3,3) plt.subplot(gs[0,:])
plt.subplot(gs[1,:-1])
plt.subplot(gs[1:,-1])
plt.subplot(gs[2,0])
plt.subplot(gs[2,1])

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec gs=gridspec.GridSpec(3,3) plt.subplot(gs[0,0:3])
plt.subplot(gs[1,0:2])
plt.subplot(gs[1:3,-1])
plt.subplot(gs[2,0])
plt.subplot(gs[2,1])

Python——Matplotlib库入门的更多相关文章

  1. 数据分析与展示——Matplotlib库入门

    Matplotlib库入门 Matplotlib库介绍 Matliotlib库是Python优秀的数据可视化第三方库. Matliotlib库的效果见:http://matplotlib.org/ga ...

  2. 转:使用 python Matplotlib 库 绘图 及 相关问题

     使用 python Matplotlib 库绘图      转:http://blog.csdn.net/daniel_ustc/article/details/9714163 Matplotlib ...

  3. 安装python Matplotlib 库

    转:使用 python Matplotlib 库 绘图 及 相关问题  使用 python Matplotlib 库绘图      转:http://blog.csdn.net/daniel_ustc ...

  4. 机器学习 Matplotlib库入门

    2017-07-21 15:22:05 Matplotlib库是一个优秀的python的数据可视化的第三方类库,其中的pyplot支持了类似matlab的图像输出操作.matplotlib.pyplo ...

  5. Python——Pandas库入门

    一.Pandas库介绍 Pandas是Python第三方库,提供高性能易用数据类型和分析工具 import pandas as pd Pandas基于NumPy实现,常与NumPy和Matplotli ...

  6. 第二周 数据分析之展示 Matplotlib库入门

    Matplotlib库介绍:优秀的数据可视化第三方库 使用:Matplotlib库由各种可视化类构成,内部结构复杂,受Matlab启发,matplotlib.pyplot是绘制各类可视化图形的命令子库 ...

  7. Python Requests库入门——应用实例-百度、360搜索关键词提交

    百度的关键词接口: http://www.baidu.com/s?wd=keyword 360的关键词接口: http://www.so.com/s?q=keyword keyword就是需要查找的关 ...

  8. (转)使用 python Matplotlib 库绘图

    运行一个简单的程序例子: import matplotlib.pyplot as plt plt.plot([1,2,3]) plt.ylabel('some numbers') plt.show() ...

  9. Python matplotlib库

    安装日期:2017.9.7 版本不太清楚,为啥嘞? 从python2到python3,还有在学的tensorflow,版本一更新就会有之前的代码不能用了.学习的时候用别人的代码各种出错,查了半天发现那 ...

随机推荐

  1. 【WPF学习】第五十六章 基于帧的动画

    除基于属性的动画系统外,WPF提供了一种创建基于帧的动画的方法,这种方法只使用代码.需要做的全部工作是响应静态的CompositionTarge.Rendering事件,触发该事件是为了给每帧获取内容 ...

  2. 【前端】这可能是你看过最全的css居中解决方案了~

    1.水平居中:行内元素解决方案 适用元素:文字,链接,及其其它inline或者inline-*类型元素(inline-block,inline-table,inline-flex) html部分代码: ...

  3. JZOJ 1492. 烤饼干

    1492. 烤饼干 (Standard IO) Description NOIP烤饼干时两面都要烤,而且一次可以烤R(1<=R<=10)行C(1<=C<=10000)列个饼干, ...

  4. LeetCode37 使用回溯算法实现解数独,详解剪枝优化

    本文始发于个人公众号:TechFlow,原创不易,求个关注 数独是一个老少咸宜的益智游戏,一直有很多拥趸.但是有没有想过,数独游戏是怎么创造出来的呢?当然我们可以每一关都人工设置,但是显然这工作量非常 ...

  5. springboot 整合logback

    日志包使用的是springboot内置的日志包,所以我们不许要再专门导入日志包 1.logback-spring.xml配置 <?xml version="1.0" enco ...

  6. 简单的节流函数throttle

    在实际项目中,总会遇到一些函数频繁调用的情况,比如window.resize,mouseover,上传进度类似的触发频率比较高的函数,造成很大的性能损耗,这里可以使用节流函数来进行性能优化,主要是限制 ...

  7. JVM03——四种垃圾回收算法,你都了解了哪几种

    在之前的文章中,已经为各位带来了JVM的内存结构与堆内存的相关介绍,今天将为为各位详解JVM垃圾回收与算法.关注我的公众号「Java面典」了解更多 Java 相关知识点. 如何确定垃圾 想要回收垃圾, ...

  8. Block详解一(底层分析)

    本篇博客不再讲述Block的基本定义使用,最近而是看了很多的block博客讲述的太乱太杂,所以抽出时间整理下block的相关底层知识,在讲述之前,提出几个问题,如果都可以回答出来以及知道原理,大神绕过 ...

  9. 用原生JS实现爱奇艺首页导航栏

    以下是爱奇艺首页的一个导航栏,用原生js写的,静态页面效果如下: 代码如下: <html> <head> <title>爱奇艺</title> < ...

  10. Geotools中读取shapefile路网数据,并创建DirectedGraph

    记录一下如何创建DirectedGraph,便于以后查找使用 static ShapefileDataStore sds= null; static DirectedGraph graph = nul ...