初识指令重排序,Java 中的锁
本文是作者原创,版权归作者所有.若要转载,请注明出处.本文只贴我觉得比较重要的源码
指令重排序
public static void main(String[] args) throws InterruptedException {
int j=0;
int k=0;
j++;
System.out.println(k);
System.out.println(j);
}
上面这段代码可能会被重排序:如下
public static void main(String[] args) throws InterruptedException {
int k=0;
System.out.println(k);
int j=0;
j++;
System.out.println(j);
}
此时指令的执行顺序可以与代码逻辑顺序不一致,但不影响程序的最终结果.
再看个demo
public class ThreadExample2 { static int i;
public static boolean runing = true; public static void main(String[] args) throws InterruptedException {
traditional();
Thread.sleep(100);
runing = false;
} public static void traditional() {
Thread thread = new Thread() {
@Override
public void run() {
while (runing){
i++;//没有方法,JVM会做指令重排序,激进优化
}
}
};
thread.start();
} }
执行下main方法
可以看出该程序一直在跑,不会停止.
此时jvm发现traditional方法内没有其他方法,JVM会做指令重排序,采取激进优化策略,对我们的代码进行了重排序
如下:
static int i;
public static boolean runing = true; public static void main(String[] args) throws InterruptedException {
traditional();
Thread.sleep(100);
runing = false;
} public static void traditional() {
Thread thread = new Thread() {
boolean temp=runing;//注意这里,此时while的条件永远为true
@Override
public void run() {
while (temp){
i++;//没有方法,JVM会做指令重排序,激进优化
}
}
};
thread.start();
}
因此程序不会停止.
我们稍微改动下代码,在while 循环里加个方法
static int i;
public static boolean runing = true; public static void main(String[] args) throws InterruptedException {
traditional();
Thread.sleep(100);
runing = false;
} public static void traditional() {
boolean temp=runing;
Thread thread = new Thread() {
@Override
public void run() {
while (runing){//
i++;//没有方法,JVM会做指令重排序,激进优化
//有方法,JVM认为可能存在方法溢出,不做指令重排序,保守优化策略
aa();
}
}
};
thread.start();
} public static void aa(){
System.out.println("hello");
}
看下结果
可以看出,程序自行停止了,因为有方法,JVM认为可能存在方法溢出,不做指令重排序,采取保守优化策略
runing = false;
全局变量runing 改动值以后,被thread线程识别,while 循环里值变为false,就自动停止了.
ok,继续,我们把main方法中的sleep()注释掉,如下
public static void main(String[] args) throws InterruptedException {
traditional();
//Thread.sleep(100);
runing = false;//会优先执行主线程的代码
} public static void traditional() {
boolean temp=runing;
Thread thread = new Thread() {
@Override
public void run() {
while (runing){//
i++;
}
}
};
thread.start();
}
看下结果:
此时,程序停止了,这是为什么呢:
可能是因为thread 线程和main线程竞争cpu资源的时候,会优先分配给main线程(我不确定,读者们可以自己思考一下)
Java 中的锁
synchronized关键字
在1.6版本之前,synchronized都是重量级锁
1.6之后,synchronized被优化,因为互斥锁比较笨重,如果线程没有互斥,那就不需要互斥锁
重量级锁
1.当一个线程要访问一个共享变量时,先用锁把变量锁住,然后再操作,操作完了之后再释放掉锁,完成
2.当另一个线程也要访问这个变量时,发现这个变量被锁住了,无法访问,它就会一直等待,直到锁没了,它再给这个变量上个锁,然后使用,使用完了释放锁,以此进行
3.我们可以这么理解:重量级锁是调用操作系统的函数来实现的锁--mutex--互斥锁
以linux为例:
1.互斥变量使用特定的数据类型:pthread_mutex_t结构体,可以认为这是一个函数
2.可以用pthread_mutex_init进行函数动态的创建 : int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t * attr)
3.对锁的操作主要包括加锁 pthread_mutex_lock()、解锁pthread_mutex_unlock()和测试加锁 pthread_mutex_trylock()三个
3.1 int pthread_mutex_tlock(pthread_mutex_t *mutex) 在寄存器中对变量操作(加/减1)
3.2 int pthread_mutex_unlock(pthread_mutex_t *mutex) 释放锁,状态恢复
3.3 int pthread_mutex_trylock(pthread_mutex_t *mutex)
pthread_mutex_trylock()语义与pthread_mutex_lock()类似,不同的是在锁已经被占据时返回EBUSY而不是挂起等待
函数pthread_mutex_trylock会尝试对互斥量加锁,如果该互斥量已经被锁住,函数调用失败,返回EBUSY,否则加锁成功返回0,线程不会被阻塞
偏向锁
偏向锁是synchronized锁的对象没有资源竞争的情况下存在的,不会一直调用操作系统函数实现(第一次会调用),而重量级锁每次都会调用
看个demo
public class SyncDemo2 { Object o= new Object(); public static void main(String[] args) {
System.out.println("pppppppppppppppppppppp");
SyncDemo2 syncDemo = new SyncDemo2();
syncDemo.start();
} public void start() {
Thread thread = new Thread() {
public void run() {
while (true) {
try {
Thread.sleep(500);
sync();
} catch (InterruptedException e) { }
}
}
}; Thread thread2 = new Thread() {
@Override
public void run() {
while (true) {
try {
Thread.sleep(500);
sync();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}; thread.setName("t1");
thread2.setName("t2");
//两个线程竞争时,synchronized是重量级锁,一个线程时,synchronized是偏向锁
thread.start();
thread2.start();
} //在1.6版本之前,synchronized都是重量级锁
//1.6之后,synchronized被优化,因为互斥锁比较笨重,如果线程没有互斥,那就不需要互斥锁
public void sync() {
synchronized (o) {
System.out.println(Thread.currentThread().getName());
}
}
}
代码很简单,就是启动两个线程,并且调用同一个同步方法,看下结果
可以看到,两个线程都执行了该同步方法,此时两个线程竞争,synchronized是重量级锁
我们把一个线程注释掉
//两个线程竞争时,synchronized是重量级锁,一个线程时,synchronized是偏向锁
thread.start();
//thread2.start();
看下结果:
此时synchronized是偏向锁
那么怎么证明呢:我目前没那个实力,给个思路.
1.需要编译并修改linux源码函数pthread_mutex_lock(),在函数中打印当前线程的pid
2.在同步方法中打印语句"current id"+当前pid(需要自己写c语言实现),java的Thread.currentThread().getId()不能获取操作系统级别的pid
3.两个线程竞争时,执行一次
说明是重量级锁,因为每次都调用操作系统的函数pthread_mutex_lock()来实现
4.注释掉一个线程,再执行一次
说明是偏向锁,因为第一次会调用pthread_mutex_lock(),后面就不调用系统函数了.
初识指令重排序,Java 中的锁的更多相关文章
- 深入浅出 Java Concurrency (4): 原子操作 part 3 指令重排序与happens-before法则
转: http://www.blogjava.net/xylz/archive/2010/07/03/325168.html 在这个小结里面重点讨论原子操作的原理和设计思想. 由于在下一个章节中会谈到 ...
- 深入浅出 Java Concurrency (4): 原子操作 part 3 指令重排序与happens-before法则[转]
在这个小结里面重点讨论原子操作的原理和设计思想. 由于在下一个章节中会谈到锁机制,因此此小节中会适当引入锁的概念. 在Java Concurrency in Practice中是这样定义线程安全的: ...
- Java的多线程机制系列:不得不提的volatile及指令重排序(happen-before)
一.不得不提的volatile volatile是个很老的关键字,几乎伴随着JDK的诞生而诞生,我们都知道这个关键字,但又不太清楚什么时候会使用它:我们在JDK及开源框架中随处可见这个关键字,但并发专 ...
- Java的多线程机制系列:(四)不得不提的volatile及指令重排序(happen-before)
一.不得不提的volatile volatile是个很老的关键字,几乎伴随着JDK的诞生而诞生,我们都知道这个关键字,但又不太清楚什么时候会使用它:我们在JDK及开源框架中随处可见这个关键字,但并发专 ...
- 深入浅出Java并发包—指令重排序
前面大致提到了JDK中的一些个原子类,也提到原子类是并发的基础,更提到所谓的线程安全,其实这些类或者并发包中的这么一些类,都是为了保证系统在运行时是线程安全的,那到底怎么样才算是线程安全呢? Java ...
- java指令重排序的问题
转载自于:http://my.oschina.net/004/blog/222069?fromerr=ER2mp62C 指令重排序是个比较复杂.觉得有些不可思议的问题,同样是先以例子开头(建议大家跑下 ...
- 【java多线程系列】java内存模型与指令重排序
在多线程编程中,需要处理两个最核心的问题,线程之间如何通信及线程之间如何同步,线程之间通信指的是线程之间通过何种机制交换信息,同步指的是如何控制不同线程之间操作发生的相对顺序.很多读者可能会说这还不简 ...
- java高并发核心要点|系列4|CPU内存指令重排序(Memory Reordering)
今天,我们来学习另一个重要的概念. CPU内存指令重排序(Memory Reordering) 什么叫重排序? 重排序的背景 我们知道现代CPU的主频越来越高,与cache的交互次数也越来越多.当CP ...
- java并发学习--第九章 指令重排序
一.happns-before happns-before是学习指令重排序前的一个必须了解的知识点,他的作用主要是就是用来判断代码的执行顺序. 1.定义 happens-before是用来指定两个操作 ...
随机推荐
- iOS开发:UIColor转成纯色图片(UIImage)
Objective-c 版本 UIKIT_EXTERN UIImage * __nullable UIColorAsImage(UIColor * __nonnull color, CGSize si ...
- Cookie SameSite属性介绍及其在ASP.NET项目中的应用
一.Cookie SameSite属性介绍 就像大家已经知道的,一旦设置Cookie之后,在Cookie失效之前浏览器会一直将这个Cookie在后续所有的请求中都传回到Server端.我们的系统会利用 ...
- Servlet(四)----Request
## Request 1.request对象和response对象的原理 1.request和response对象是由服务器创建的.我们来使用他们. 2.request对象是来获取请求消息,resp ...
- CF1326C Permutation Partitions 题解,
原题链接 简要题意: 给定一个 \(1\) ~ \(n\) 的置换,将数组分为 \(k\) 个区间,使得每个区间的最大值之和最大.求这个值,和分区的方案数. 关键在于 \(1\) ~ \(n\) 的置 ...
- 贪心-谷歌-857. 雇佣 K 名工人的最低成本
2020-03-15 22:00:39 问题描述: 有 N 名工人. 第 i 名工人的工作质量为 quality[i] ,其最低期望工资为 wage[i] . 现在我们想雇佣 K 名工人组成一个工资组 ...
- 死磕Lambda表达式(五):Comparator复合
给岁月以文明,而不是给文明以岁月.--<三体> 在上一篇文章(传送门)中介绍了JDK为我们提供的常用函数式接口,JDK不仅提供的这些函数式接口,其中一些接口还为我们提供了实用的默认方法,这 ...
- mysql两表合并,对一列数据进行处理
加班一时爽,一直加班~一直爽~ 欢迎收看http://www.996.icu/ 今天弄了下MySQL中两表合并的并且要处理一列数据,这列数据原来都是小写字母,处理时将这列数据改成驼峰命名的~~ 基本 ...
- coding++:使用 javascript 在html中获取url参数
函数处理定义如下: < script type = "text/javascript" > function $G() { var Url = top.window.l ...
- eureka和zookeeper注册中心的区别
ookeeper与Eureka区别 CPA理论:一个分布式系统不可能同时满足C(一致性).A(可用性)和P(分区容错性).由于分区容错性在是分布式系统中必须要保证的,因此我们只能在A和C之间进行权衡. ...
- A song for a new begining 8月26日到10月11日 第一阶段