D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery
这个题目好难啊,我理解了好久,都没有怎么理解好,
这种线段树优化dp,感觉还是很难的。
直接说思路吧,说不清楚就看代码吧。
这个题目转移方程还是很好写的,
dp[i][j]表示前面 i 个蛋糕 分成了 j 个数字的最大价值。
dp[i][j]=max(dp[k][j-1]+val[k+1~i])
显而易见的是,这个肯定不可以直接暴力求,所以就要用到线段树优化。
线段树怎么优化呢,
先看这个问题,给你一个点 x ,问你以这个点为右端点的所有区间有多少种数字,
这个很简单是不是,那继续问你 从x 到 x+1 这个点怎么转移?
是不是找到 last[a[x+1]] 上一次出现a[x+1] 这个数字的位置,从这个位置+1到 x+1 这个位置,所有的区间都+1
这个是不是就是线段树的更新,那么线段树的每一个位置是不是随着我们对 i 的枚举,每一个叶子节点 就是l==r==k 是不是 val[k~i]
知道这个了,回到之前的问题,我们要求val[k+1~i]+dp[k][j-1]的最大值
因为这个dp[k][j-1]上一次已经求出来了,对这一次不产生任何影响了,是一个定值。
我们就只需要求val[k+1~j]
所以可以把这两个东西一起放到线段树里面,但是一个是l==r==k这个位置,一个是k+1这个位置,所以需要val往前面挪一下,或者dp[k]往后挪一下。
我选择第一种,那么就是每次更新,就更新 last[a[x+1]] 到 x 这个位置。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>
#include <stack>
#include <queue>
#include <map>
#include <string>
#define inf 0x3f3f3f3f
#define inf64 0x3f3f3f3f3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 4e4+ 10;
int maxs[maxn * 4], lazy[maxn * 4];
int dp[maxn];
void push_up(int id)
{
maxs[id] = max(maxs[id << 1], maxs[id << 1 | 1]);
} void build(int id,int l,int r)
{
lazy[id] = 0;
maxs[id] = 0;
if(l==r)
{
maxs[id] = dp[l];
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
push_up(id);
} void push_down(int id)
{
if (lazy[id] == 0) return;
maxs[id << 1] += lazy[id];
maxs[id << 1 | 1] += lazy[id]; lazy[id << 1] += lazy[id];
lazy[id << 1 | 1] += lazy[id]; lazy[id] = 0;
} void update(int id,int l,int r,int x,int y,int val)
{
// printf("id=%d l=%d r=%d x=%d y=%d val=%d\n", id, l, r, x, y, val);
if(x<=l&&y>=r)
{
maxs[id] += val;
lazy[id] += val;
return;
}
push_down(id);
int mid = (l + r) >> 1;
if (x <= mid) update(id << 1, l, mid, x, y, val);
if (y > mid) update(id << 1 | 1, mid + 1, r, x, y, val);
push_up(id);
} int query(int id,int l,int r,int x,int y)
{
if (x <= l && y >= r) return maxs[id];
push_down(id);
int ans = 0, mid = (l + r) >> 1;
if (x <= mid) ans = max(ans, query(id << 1, l, mid, x, y));
if (y > mid) ans = max(ans, query(id << 1 | 1, mid + 1, r, x, y));
return ans;
}
int last[maxn];
int a[maxn];
int main()
{
int n, k;
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for(int j=1;j<=k;j++)
{
memset(last, 0, sizeof(last));
build(1, 0, n);
for(int i=1;i<=n;i++)
{
update(1, 0, n, last[a[i]], i - 1, 1);
last[a[i]] = i;
dp[i] = query(1, 0, n, 0, i - 1);
}
}
printf("%d\n", dp[n]);
return 0;
}
D - The Bakery CodeForces - 834D 线段树优化dp···的更多相关文章
- Linear Kingdom Races CodeForces - 115E (线段树优化dp)
大意: n条赛道, 初始全坏, 修复第$i$条花费$a_i$, m场比赛, 第$i$场比赛需要占用$[l_i,r_i]$的所有赛道, 收益为$w_i$, 求一个比赛方案使得收益最大. 设$dp[i]$ ...
- New task CodeForces - 788E (线段树优化dp)
比较套路的一个题, 对每个数维护一颗线段树来转移就好了. #include <iostream> #include <algorithm> #include <cstdi ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
- POJ 2376 Cleaning Shifts (线段树优化DP)
题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...
- 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$
正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...
随机推荐
- 3分钟掌握Quartz.net分布式定时任务的姿势
引言 长话短说,今天聊一聊分布式定时任务,我的流水账笔记: ASP.NET Core+Quartz.Net实现web定时任务 AspNetCore结合Redis实践消息队列 细心朋友稍一分析,就知道还 ...
- 对象中属性 加锁 用:volatile 关键词修饰 而 不用 synchronized 加锁
一个对象中有一个状态 属性,现在业务需求 存在多线程来修改 和 拿去 这个状态 的值,这种情况如果加锁怎么加? 一种是 在 set 和get 这个状态的 方法那加 synchronized . 还有一 ...
- zathura-vim风格轻量级pdf阅读器
安装(arch/manjaro) yay -Sy zathura-pdf-poppler 0.2.9-1 使用 `快捷键` gg 行首 G 行尾 j/k/h/l 单行移动 J/K 或 Ctrl + f ...
- ASE课程总结 by 张葳
本期ASE课程分为两个阶段,第一阶段的personal project与第二阶段的team project,其中,第一阶段旨在锻炼我们个人的问题解决能力和编程能力,第二阶段则锻炼主要我们的管理能力,合 ...
- 1327C - Game with Chips (构造)
题目大意:一个n*m的棋盘上有k个棋子,k个棋子相互关联,可以一起向上向下向左向右,当碰到边界时,如果继续移动会发生越界,那么该棋子会保持不动,其余棋子继续移动.问能否在2*n*m的移动次数内,使各个 ...
- F 最大公约数和最小公倍数问题
链接:https://ac.nowcoder.com/acm/contest/948/F来源:牛客网 输入2个正整数x0,y0(2<=x0<100000,2<=y0<=1000 ...
- F - Dragon Balls
Five hundred years later, the number of dragon balls will increase unexpectedly, so it's too difficu ...
- mongodb的远程连接和配置(阿里ECS)
1.) 首先安装mongodb 2.)配置mongodb.conf bind_ip = 0.0.0.0 port= dbpath=/root/mongodb/mongodb-linux-x86_64- ...
- es技术规划
一.业务背景 es服务当前没有专门的部门负责维护和开发,交由各端自行负责维护,随着公司业务查询和统计需求非常多,会面临居多方面问题和挑战: 无人(专业RD或部门)负责 无专业的人进行维护,遇到问题几乎 ...
- ADO.NET(二)
对Command的拓展延伸 执行SQL语句. Command 对象需要取得将要执行的SQL语句,通过调用该类的多种方法,向数据库提交SQL语句. ExecuteNonQuery(),ExecuteR ...