Description

神犇YY虐完数论后给傻×kAc出了一题
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
kAc这种傻×必然不会了,于是向你来请教……
多组输入

Input

第一行一个整数T 表述数据组数
接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2
10 10
100 100

Sample Output

30
2791

HINT

T = 10000

N, M <= 10000000

【思路】

  唉??click here

【代码】

 #include<cstdio>
#include<algorithm>
using namespace std; typedef long long ll;
const int N = 1e7+; ll mu[N],sum[N],su[N],sz,np[N]; void get_mu()
{
int i,j;
mu[]=;
for(i=;i<N;i++) {
if(!np[i]) {
su[++sz]=i;
mu[i]=-;
}
for(j=;j<=sz&&i*su[j]<N;j++) {
np[i*su[j]]=;
if(i%su[j]==) mu[i*su[j]]=;
else mu[i*su[j]]=-mu[i];
}
}
for(i=;i<=sz;i++)
for(j=su[i];j<N;j+=su[i])
sum[j]+=mu[j/su[i]];
for(i=;i<N;i++)
sum[i]+=sum[i-];
}
ll C(int n,int m)
{
int i,last; ll res=;
if(n>m) swap(n,m);
for(i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
res+=(n/i)*(m/i)*(sum[last]-sum[i-]);
}
return res;
}
int main()
{
get_mu();
int T,n,m;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
printf("%lld\n",C(n,m));
}
return ;
}

bzoj 2820 YY的GCD(莫比乌斯反演)的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  3. Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)

    2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...

  4. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  5. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  6. BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛

    Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...

  7. BZOJ 2820 YY的GCD ——莫比乌斯反演

    我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...

  8. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  9. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  10. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

随机推荐

  1. HDU4608+模拟

    简单的模拟题. 暴力枚举 /* 模拟 */ #include<algorithm> #include<iostream> #include<string.h> #i ...

  2. poj 3318 Matrix Multiplication 随机化算法

    方法1:暴力法 矩阵乘法+优化可以卡时间过的. 方法2:随机化 随机构造向量x[1..n],则有xAB=xC;这样可以将小运算至O(n^2). 代码如下: #include<iostream&g ...

  3. codeforces #309 div1 A

    先说我的解法吧 首先设f(i,j)表示选了前i个球且j种颜色都已经选完了的方案数 这显然是可以随便转移的 #include<cstdio> #include<cstring> ...

  4. Time.deltaTime 含义和应用

    第一種:使用Time.deltaTime 一秒內從第1個Frame到最後一個Frame所花的時間,所以不管電腦是一秒跑60格或者一秒30格.24格,值都會趨近於一. 就結果而言,deltaTime是為 ...

  5. js 中多维数组的深拷贝的多种实现方式

    因为javascript分原始类型与引用类型(与java.c#类似).Array是引用类型,所以直接用=号赋值的话,只是把源数组的地址(或叫指针)赋值给目的数组,并没有实现数组的数据的拷贝.另外对一维 ...

  6. java List 去重(两种方式)

    方法一: 通过Iterator 的remove方法 Java代码  public void testList() { List<Integer> list=new ArrayList< ...

  7. Java IO2:字节流

    输入输出流: • 输入/输出时, 数据在通信通道中流动. 所谓“数据流(stream)”指的是所有数据通信通道之中,数据的起点和终点. 信息的通道就是一个数据流.只要是数据从一个地方“流” 到另外一个 ...

  8. android的休眠和唤醒流程

    android休眠唤醒流程: power按键事件上报给android系统,最终由windownmanager接收到,当有按键事件时判断是否需要休眠后唤醒系统,然后调用powermanager系统服务去 ...

  9. Servlet 下载文件

    这几天有点懒散,还好没有忘记看书,上周去了国家图书馆翻阅了一些和Java相关的书籍,其实这些书都是自己以前看过或者听过,按理来说,不应该看自己已经看过的书籍,应该找一些最新的书籍去看,但是每次走到书架 ...

  10. JavaScript DOM高级程序设计 3.6 实例 将HTML代码转换成DOM代码(附源码)--我要坚持到底!

    作为一名Web开发者,最讨厌的事情就是重复性任务,摆脱乏味的日常重复性事物的一种方法,是借助可重用的对象或者说与你现在建立的ADS库类似的库,另外一种让事情变得有意思,且能够加速开发进程的方式是编写能 ...