bzoj 2820 YY的GCD(莫比乌斯反演)
Description
Input
Output
Sample Input
10 10
100 100
Sample Output
2791
HINT
T = 10000
N, M <= 10000000
【思路】

唉??click here
【代码】
#include<cstdio>
#include<algorithm>
using namespace std; typedef long long ll;
const int N = 1e7+; ll mu[N],sum[N],su[N],sz,np[N]; void get_mu()
{
int i,j;
mu[]=;
for(i=;i<N;i++) {
if(!np[i]) {
su[++sz]=i;
mu[i]=-;
}
for(j=;j<=sz&&i*su[j]<N;j++) {
np[i*su[j]]=;
if(i%su[j]==) mu[i*su[j]]=;
else mu[i*su[j]]=-mu[i];
}
}
for(i=;i<=sz;i++)
for(j=su[i];j<N;j+=su[i])
sum[j]+=mu[j/su[i]];
for(i=;i<N;i++)
sum[i]+=sum[i-];
}
ll C(int n,int m)
{
int i,last; ll res=;
if(n>m) swap(n,m);
for(i=;i<=n;i=last+) {
last=min(n/(n/i),m/(m/i));
res+=(n/i)*(m/i)*(sum[last]-sum[i-]);
}
return res;
}
int main()
{
get_mu();
int T,n,m;
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
printf("%lld\n",C(n,m));
}
return ;
}
bzoj 2820 YY的GCD(莫比乌斯反演)的更多相关文章
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...
- BZOJ 2820 YY的GCD ——莫比乌斯反演
我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
- SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...
随机推荐
- 3.5 spring-replaced-method 子元素的使用与解析
1.replaced-method 子元素 方法替换: 可以在运行时用新的方法替换现有的方法,与之前的 look-up不同的是replace-method 不但可以动态地替换返回的实体bean,而且可 ...
- SQL 去除重复、获取最新记录
应用中常会有需要去除重复的记录,或者获取某些最新记录(如:每个用户可以答题多次,每次答题时间不同,现在要获取所有用户的最新答题记录,即每个用户取最新的一条) 使用group 和max 即可实现上述功能 ...
- 如何将word中上下两行文字对齐?
一.问题来源及描述 本科毕设的时候积累的问题,整理如下. 红头文件下面的署名,上下要对齐. 二.解决办法 经验证,第一次拉标尺要把标尺放在第一行的光标处,为了换行后,再次enter,tab后到与上一行 ...
- *****正则表达式匹配URL
最近将匹配URL的正则替换了下 之前的是: ((http|ftp|https)://)(([a-zA-Z0-9\._-]+\.[a-zA-Z]{2,6})|([0-9]{1,3}\.[0-9]{1,3 ...
- poj 2888 Magic Bracelet
经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...
- android 图片画画板
canvas.xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns: ...
- 深入剖析Classloader(一)--类的主动使用与被动使用
原文地址:http://yhjhappy234.blog.163.com/blog/static/3163283220115573911607 我们知道java运行的是这样的,首先java编译器将我们 ...
- highcharts 折线图
<!doctype html> <html lang="en"> <head> <script type="text/javas ...
- MyBatis的动态SQL操作--查询
查询条件不确定,需要根据情况产生SQL语法,这种情况叫动态SQL,即根据不同的情况生成不同的sql语句. 模拟一个场景,在做多条件搜索的时候,
- POJ1265——Area(Pick定理+多边形面积)
Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...