算法入门系列一--DP初步
数字三角形(数塔问题)
其实动态规划本身并不是一个特定的算法,是一种用途广泛的问题求解方法,一种思想,一种手段。
1.1问题描述与状态定义
【状态转移分析】从格子(i,j)出发有两种决策。若往左走,则走到(i+1,j)后续要求“从(i+1,j)出发后能得到的最大和“这一问题,即是d(i+1,j)。类似的,往右做之后要求解d(i,j+1)。由于这两个选择自由可选,所以,应该选择较大的。即得到了所谓的状态转移方程:
1.2 解决方法:记忆化搜索与递推
方法一:递归计算
int d(int i, int j)
{
return a[i][j] +( i == n ? 0 : d(i+1, j) >? d(i, j+1) ) ;
}
如此计算正确只是效率依然不高,问题在于重复计算。就是一些格子被两个父节点所共有,所以,在递归的时候,便会被重复计算。
方法二: 递推计算
(注意此时重复边界的处理)
int i, j;
for (j=1; j<=n; j++)
d[n][j] = a[n][j] ;
for (i=n-1; i>=1; i--)
for (j=1; j<=i; j++)
{
d[i][j] = a [i][j] + d[i+1][j] >? d[i][j+1] ;
}
i是逆序枚举的,因此在计算d[i] [j] 之前,他所需要的d[i+1][j] 和 d[i][j+1] 已经计算出来了。
方法三:记忆化搜索
int d(int i, int j)
{
if(d[i][j >= 0) return d[i][j] ;
return d[i][j] = a[i][j] +( i == n ? 0 : d(i+1, j) >? d(i, j+1) ) ;
}
依然是递归函数,同时把计算结果存在数组d中。题目说各个数字均为非负数,因此如已经计算过某个d[i][j],那么期应该是非负数。
这样只需要把所有的数组元素初始化为负数,如-1,就可以知道是否计算过d[i][j].
1.3程序实战练手
算法入门系列一--DP初步的更多相关文章
- 数据结构与算法入门系列教程-C#
数据结构与算法入门系列教程 (一)为啥要学习数据结构与算法 曾经我也以为自己很牛逼,工作中同事也觉得我还可以,领导也看得起我,啥啥啥都好,就这样过了几年,忽然发现自己学新东西没劲.时代都变了,而我还只 ...
- 算法入门系列2:k近邻算法
用官方的话来说,所谓K近邻算法(k-Nearest Neighbor,KNN),即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个 ...
- 算法入门系列1:k-means
k-means是一种无监督学习算法,用于聚类. 下图(来自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html)展示了k-m ...
- 数据挖掘入门系列教程(二)之分类问题OneR算法
数据挖掘入门系列教程(二)之分类问题OneR算法 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:G ...
- 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...
- 数据挖掘入门系列教程(四点五)之Apriori算法
目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联 ...
- 数据挖掘入门系列教程(五)之Apriori算法Python实现
数据挖掘入门系列教程(五)之Apriori算法Python实现 加载数据集 获得训练集 频繁项的生成 生成规则 获得support 获得confidence 获得Lift 进行验证 总结 参考 数据挖 ...
- 前端学习 node 快速入门 系列 —— 初步认识 node
其他章节请看: 前端学习 node 快速入门 系列 初步认识 node node 是什么 node(或者称node.js)是 javaScript(以下简称js) 运行时的一个环境.不是一门语言. 以 ...
- vue 快速入门 系列 —— 初步认识 vue
其他章节请看: vue 快速入门 系列 初步认识 vue vue 是什么 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架. 所谓渐进式,就是你可以一步一步.有阶段 ...
随机推荐
- 为SQL表添加全文索引范例
--范例: --为HR_Job中的JobTitle,JobDes创建全文索引 execute sp_fulltext_catalog 'boli188', 'create' --创建全文目录,boli ...
- git中reset与revert的使用
http://alpha-blog.wanglianghome.org/2010/07/30/git-partial-rollback/ reset(版本撤回) 格式 git reset [-q] [ ...
- 在stm32上移植wpa_supplicant(一)
wifi芯片为88w8686,已经写好了驱动,用的是SPI方式,接下来准备移植wpa_supplicant.参考的资料为一篇论文----<基于微控制器的WPA技术研究与应用>. wpa_s ...
- redis发布/订阅模式
其实在很多的MQ产品中都存在这样的一个模式,我们常听到的一个例子 就是邮件订阅的场景,什么意思呢,也就是说100个人订阅了你的博客,如果博主发表了文章,那么100个人就会同时收到通知邮件,除了这个 场 ...
- 《C++ primer》--第三章
习题3.2 什么是默认构造函数? 解答: 默认构造函数就是在没有显示提供初始化式时调用的构造函数.它由不带参数的构造函数,或者为所有形参提供默认实参的构造函数定义.如果定义某个类的变量时没有提供初始化 ...
- 《转》DNS放大攻击
原文链接:http://blog.sina.com.cn/s/blog_90bb1f200101iazl.html 放大攻击(也称为杠杆攻击,英文名字DNS Amplification Attack) ...
- 转载--详解tomcat配置
http://www.importnew.com/17124.html 原文链接 几乎所有容器类型的应用都会包含一个名为 server.xml 的文件结构.基本上,其中的每个元数据或者配置都是容器完 ...
- POJ 1004 解题报告
1.题目描述: http://poj.org/problem?id=1004 2.解题过程 这个题目咋一看很简单,虽然最终要解出来的确也不难,但是还是稍微有些小把戏在里面,其中最大的把戏就是float ...
- RabbitMQ>Erlang machine stopped instantly (distribution name conflict?). The service is not restarted as OnFail is set to ignore.-报错解决方案 原来是NNND。。。
>Erlang machine stopped instantly (distribution name conflict?). The service is not restarted as ...
- 详解HTTP中的摘要认证机制(转)
Basic认证方式是存在很多缺陷的,具体表现如下: 1, Basic认证会通过网络发送用户名和密码,并且是以base64的方式对用户名和密码进行简单的编码后发送的,而base64编码本身非常容易被解 ...