hdu 4670 树的点分治
思路:首先当然是要用树的点分治了。根节点为root,那么经过root的合法路径数求出来这题就解决了。因为我们可以用分治枚举根,最后将所有根的路径数加起来就是结果。当然这里的根不是整棵树的根,是子树根。
我们为每个节点分配一个长度为30的数组记录给定因数在每个节点权值出现的次数。如果某几个权值相乘的值Value的三次根仍是整数的话,那么Value在给定因数的所有幂一定是3的倍数。通过这个转换,我们将所有的幂都对3取余,结果还是一样。
在判断经过root的合法路径数时,我们进入其一个子树,将经过的路径因数的幂相加,判读其是否有对立状态存在,若存在,结果+1。所谓对立状态就是能够合成合法路径的状态。
例如因数为 2,3,5.
那么 x节点的状态为 0,1,2 表示2的0次幂,3的1次幂,5的2次幂。
其对立状态就是 0,2,1。因为他这两条路径合成一条后,就变成了0,3,3.都是3的倍数。
状态数的记录,我们可以用long long 型的map。
要加栈,不然会RE。我就连续两次RE,加了就AC了。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<vector>
#include<map>
#define Maxn 100010
#define Maxm 200010
#define LL __int64
#define inf 0x7fffffff
using namespace std;
map<LL,LL> hash;
int head[Maxn],vi[Maxn],e,ans,num,k,n,m,prime[],lans;
int mx[Maxn],mi,dis[Maxn],root,size[Maxn];
LL Exp[];
struct Node{
int cnt[];
}node[Maxn];
struct Edge{
int u,v,val,next;
}edge[Maxm];
vector <Node> q;
void init()
{
memset(vi,,sizeof(vi));
memset(head,-,sizeof(head));
memset(mx,,sizeof(mx));
memset(dis,,sizeof(dis));
q.clear();
hash.clear();
Exp[]=;
for(int i=;i<=;i++)
Exp[i]=Exp[i-]*;
e=ans=lans=;
}
void add(int u,int v)
{
edge[e].u=u,edge[e].v=v,edge[e].next=head[u],head[u]=e++;
edge[e].u=v,edge[e].v=u,edge[e].next=head[v],head[v]=e++;
}
void dfssize(int u,int fa)
{
int i,v;
size[u]=;
mx[u]=;
for(i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(v!=fa&&!vi[v])
{
dfssize(v,u);
size[u]+=size[v];
if(size[v]>mx[u]) mx[u]=size[v];
}
}
}
void dfsroot(int r,int u,int fa)
{
int v,i;
if(size[r]-size[u]>mx[u]) mx[u]=size[r]-size[u];
if(mx[u]<mi) mi=mx[u],root=u;
for(i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(v!=fa&&!vi[v])
{
dfsroot(r,v,u);
}
}
}
void dfsdis(int u,Node d,int fa)
{
int i,v,j;
q.push_back(d);
LL cc=;
for(j=;j<=k;j++)//判断其是否存在对立状态
{
cc+=(-(d.cnt[j]+node[root].cnt[j])%)%*Exp[j];
}
lans+=hash[cc];//答案加上对立状态数
Node temp;
for(i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(v!=fa&&!vi[v])
{
for(j=;j<=k;j++)
{
temp.cnt[j]=(d.cnt[j]+node[v].cnt[j])%;
}
dfsdis(v,temp,u);
}
}
}
int calc(int u)
{
int i,j,ret=,sz,v;
lans=;
hash.clear();
hash[]=;
for(i=head[u];i!=-;i=edge[i].next)
{
q.clear();
v=edge[i].v;
if(!vi[v])
{
dfsdis(v,node[v],u);
sz=q.size();
//cout<<u<<" "<<v<<" "<<sz<<endl;
for(int r=;r<sz;r++)//回退时,记录这条子路径上的所有状态数。
{
LL cc=;
for(j=;j<=k;j++)
{
cc+=q[r].cnt[j]*Exp[j];
}
hash[cc]++;
}
}
}
return lans;
}
void dfs(int u)
{
int i,v,j;
mi=n;
dfssize(u,);
dfsroot(u,u,);
ans+=calc(root);
//cout<<root<<"************"<<endl;
vi[root]=;
for(i=head[root];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!vi[v])
{
dfs(v);
}
}
}
int main()
{
int i,j,u,v;
LL x;
while(scanf("%d",&n)!=EOF)
{
init();
scanf("%d",&k);
for(i=;i<=k;i++)
scanf("%d",&prime[i]);
for(i=;i<=n;i++)
{
scanf("%I64d",&x);
memset(node[i].cnt,,sizeof(node[i].cnt));
for(j=;j<=k;j++)
{
while(x%prime[j]==&&x!=)
{
node[i].cnt[j]++;
node[i].cnt[j]%=;
x/=prime[j];
}
if(x==)
break;
}
int cc=;
for(j=;j<=k;j++)
cc+=node[i].cnt[j];
if(cc==)
ans++;
}
//printf("&&&&&&&&&&&&\n");
for(i=;i<n;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
dfs();
printf("%d\n",ans);
}
return ;
}
hdu 4670 树的点分治的更多相关文章
- hdu 4670 树的分治-求点对的个数
/* 树的分治 因为树的点权值可达到10^15,注意手动扩栈,还有int64 题意:给你一棵树,给你一些素数,给你每个点一个权值且每个权值均可由这些素数组成.现在定义任意任意两点的价值为他们路径上的权 ...
- hdu 4670 Cube number on a tree(点分治)
Cube number on a tree Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/ ...
- hdu 4812 D Tree(树的点分治)
D Tree Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others) Total ...
- HDU4812 D Tree(树的点分治)
题目大概说给一棵有点权的树,输出字典序最小的点对,使这两点间路径上点权的乘积模1000003的结果为k. 树的点分治搞了.因为是点权过根的两条路径的LCA会被重复统计,而注意到1000003是质数,所 ...
- CF 322E - Ciel the Commander 树的点分治
树链剖分可以看成是树的边分治,什么是点分治呢? CF322E - Ciel the Commander 题目:给出一棵树,对于每个节点有一个等级(A-Z,A最高),如果两个不同的节点有相同等级的父节点 ...
- bzoj 3435: [Wc2014]紫荆花之恋 替罪羊树维护点分治 && AC400
3435: [Wc2014]紫荆花之恋 Time Limit: 240 Sec Memory Limit: 512 MBSubmit: 159 Solved: 40[Submit][Status] ...
- bzoj 2152: 聪聪可可 树的点分治
2152: 聪聪可可 Time Limit: 3 Sec Memory Limit: 259 MBSubmit: 485 Solved: 251[Submit][Status] Descripti ...
- hdu 3842 Machine Works(cdq分治维护凸壳)
题目链接:hdu 3842 Machine Works 详细题解: HDU 3842 Machine Works cdq分治 斜率优化 细节比较多,好好体会一下. 在维护斜率的时候要考虑x1与x2是否 ...
- hdu_5314_Happy King(树的点分治)
题目链接:hdu_5314_Happy King 题意: 给出一颗n个结点的树,点上有权值: 求点对(x,y)满足x!=y且x到y的路径上最大值与最小值的差<=D: 题解: 还是树的点分治,在统 ...
随机推荐
- DB2 递归查询
上一篇中讲解了ORACLE中的递归查询,下面我们看一下DB2中如何使用递归查询: 同样的我们先新建一个表来存储以上信息,并插入测试数据: --建表 create table FAMILY ( pers ...
- CodeForces 455A Boredom (DP)
Boredom 题目链接: http://acm.hust.edu.cn/vjudge/contest/121334#problem/G Description Alex doesn't like b ...
- 斜率DP题目
uva 12524 题意:沿河有n个点,每个点有w的东西,有一艘船从起点出发,沿途可以装运东西和卸载东西,船的容量无限,每次把wi的东西从x运到y的花费为(y-x)*wi; 问把n个点的东西合并成k个 ...
- 使用paramiko进行打包操作
使用paramiko执行ssh命令的时候有一个很坑爹的地方:它无法准确的识别你的系统环境变量,所以使用一些命令的时候会发现,直接在系统中执行该命令的时候可以,但是换成paramiko执行的时候会报错说 ...
- linux下vi命令的使用
linux vi命令详解 刚开始学着用linux,对vi命令不是很熟,在网上转接了一篇. vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器,这里只是简单 ...
- PostgreSQL中,database,schema,table之间关系
从逻辑上看,schema,table,都是位于database之下. 首先,在postgres数据库下建立表(相当于建立在public schema下): [pgsql@localhost bin]$ ...
- 让WPS支持VHDL的关键词加粗
WPS的VBA在这里下载:http://bbs.wps.cn/forum.php?mod=viewthread&tid=22347925 语法高亮是参考Word的,这篇文章:http://bl ...
- SON-RPC for Java
JSON-RPC for Java https://github.com/briandilley/jsonrpc4j#json-rpc-for-java This project aims to pr ...
- Java中介者设计模式
中介者设计模式是一种很常见的设计模式,当中我们最为熟悉的就是我们的MVC框架.当中的C作为控制器就是一个详细的中介者,它的作用是把业务逻辑(Model),和视图(Viwe)隔离开来.使M V协调工作, ...
- DataPackage-数据库、表的区域设置和系统不一致导致处理失败
问题描述: 最近学习Datapackage,创建完之后,部署处理但总是提示某某字段的区域设置和目标字段的区域设置不一致,具体如图: 测试发现其它的数据库表又没有这类 ...