Description

Bobo 居住在大城市 ICPCCamp。

ICPCCamp 有 n 个地铁站,用 1,2,…,n 编号。 m 段双向的地铁线路连接 n 个地铁站,其中第 i 段地铁属于 ci 号线,位于站 ai,bi 之间,往返均需要花费
ti分钟(即从 ai 到 bi 需要
ti 分钟,从 bi 到 ai 也需要
ti 分钟)。
众所周知,换乘线路很麻烦。如果乘坐第 i 段地铁来到地铁站 s,又乘坐第 j 段地铁离开地铁站 s,那么需要额外花费 |ci-cj |
分钟。注意,换乘只能在地铁站内进行。
Bobo 想知道从地铁站 1 到地铁站 n 所需要花费的最小时间。

Input

输入包含不超过 20 组数据。
每组数据的第一行包含两个整数 n,m (2≤n≤105,1≤m≤105).
接下来 m 行的第 i 行包含四个整数 ai,bi,ci,ti (1≤ai,bi,ci≤n,1≤ti≤109).
保证存在从地铁站 1 到 n 的地铁线路(不一定直达)。

Output

对于每组数据,输出一个整数表示要求的值。

Sample Input

3 3
1 2 1 1
2 3 2 1
1 3 1 1
3 3
1 2 1 1
2 3 2 1
1 3 1 10
3 2
1 2 1 1
2 3 1 1

Sample Output

1
3
2
Dijkstra 在求最短路的时候可以 以边来求最短路,这是以前没有遇到过的。有时候图论中对点操作不正确的时候可以对边做操作
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <math.h>
#include <string>
#include <string.h>
#include <stdio.h>
#include <queue> using namespace std;
const int maxn=1e5;
typedef long long int LL;
const LL INF=0x3f3f3f3f3f3f3f3f;
struct node
{
int next;
int value;
LL weight;
LL c;
}edge[maxn*2+5];
int head[maxn*2+5];
int tot;
int vis[maxn+5];
LL d[maxn*2+5];
int n,m;
void add(int x,int y,int w,int c)
{
edge[tot].value=y;
edge[tot].weight=w;
edge[tot].c=c;
edge[tot].next=head[x];
head[x]=tot++;
}
struct Node
{
int id;
LL dis;
Node(){};
Node(int id,LL dis)
{
this->id=id;
this->dis=dis;
}
friend bool operator <(Node a,Node b)
{
return a.dis>b.dis;
}
};
LL Dijkstra()
{
priority_queue<Node> q;
for(int i=0;i<tot;i++)
d[i]=INF;
LL ans=INF;
for(int i=head[1];i!=-1;i=edge[i].next)
{
d[i]=edge[i].weight;
q.push(Node(i,d[i]));
}
while(!q.empty())
{
Node term=q.top();
q.pop();
int p=edge[term.id].value; if(p==n)
ans=min(ans,term.dis);
for(int i=head[p];i!=-1;i=edge[i].next)
{
if(d[i]>term.dis+edge[i].weight+abs(edge[i].c-edge[term.id].c))
{
d[i]=term.dis+edge[i].weight+abs(edge[i].c-edge[term.id].c);
q.push(Node(i,d[i]));
} } }
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
int x,y,w,c;
memset(head,-1,sizeof(head));
tot=0;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&x,&y,&c,&w);
add(x,y,w,c);
add(y,x,w,c);
} printf("%lld\n", Dijkstra());
}
return 0;
}


CSU 1808 地铁 (Dijkstra)的更多相关文章

  1. CSU 1808: 地铁 最短路

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1808 1808: 地铁 Time Limit: 5 SecMemory Limit: ...

  2. CSU 1808 - 地铁 - [最短路变形]

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1808 Time limit: 5000 ms Memory limit: 13107 ...

  3. CSU 1808 地铁(最短路变形)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1808 题意: Bobo 居住在大城市 ICPCCamp. ICPCCamp 有 n 个地铁站, ...

  4. 【最短路】【STL】CSU 1808 地铁 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1808 题目大意: N个点M条无向边(N,M<=105),每条边属于某一条地铁Ci ...

  5. CSU 1808 地铁

    题意: ICPCCamp 有 n 个地铁站,用 1,2,-,n 编号. m 段双向的地铁线路连接 n 个地铁站,其中第 i 段地铁属于 ci 号线,位于站 ai,bi 之间,往返均需要花费 ti 分钟 ...

  6. CSU 1808:地铁(Dijkstra)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1808 题意:…… 思路:和之前的天梯赛的一题一样,但是简单点. 没办法直接用点去算.把边看成点 ...

  7. CSU1808 地铁 —— dijkstra变形

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1808 题解:由于中转线路需要花费一定的时间,所以一般的以顶点为研究对象的dijkst ...

  8. 地铁 Dijkstra(优先队列优化) 湖南省第12届省赛

    传送门:地铁 思路:拆点,最短路:拆点比较复杂,所以对边进行最短路,spfa会tle,所以改用Dijkstra(优先队列优化) 模板 /******************************** ...

  9. CSUOJ 1808 地铁

    Description Bobo 居住在大城市 ICPCCamp. ICPCCamp 有 n 个地铁站,用 1,2,-,n 编号. m 段双向的地铁线路连接 n 个地铁站,其中第 i 段地铁属于 ci ...

随机推荐

  1. Android isUserAMonkey()

    Monkey是Android上的一个自动化测试工具.产生随机事件由于压力测试等. ActivityManager.isUserAMonkey()判断当前是否有运行的Monkey测试.有就返回true. ...

  2. 利用百度地图API根据地址查询经纬度

    传上来只是为了记录下三种jsonp方式,$.get(url, callback)方式不行,会出错 -- 必须指明返回类型为”json”才行. 或者使用$.getJSON()或者$.ajax({}). ...

  3. 不可在 for 循环体内修改循环变量,防止 for 循环失去控制

    不可在 for 循环体内修改循环变量,防止 for 循环失去控制. #include <iostream> /* run this program using the console pa ...

  4. cmd命令行编码设置

    cmd窗口情况下:windows下cmd默认的编码是GBK 想在windows下查看sqlite的utf-8中文需要先 执行chcp 65001把当前页换为utf-8编码 chcp 命令: chcp ...

  5. Hbase1.1.0.1配置集群

    参考链接 http://wuyudong.com/archives/119?utm_source=tuicool 参考链接 http://www.cnblogs.com/archimedes/p/45 ...

  6. hadoop中文官网

    http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_shell.html

  7. SharePoint 2013 网站迁移流程

    在新的Farm(场)里,创建一个新的Web Application(网站应用程序),不需要创建Site Collection(网站集) Copy(复制)自定义开发的WSP包到新的Farm Server ...

  8. 单例模式(singleton pattern)--------创造型模式

    缺点: 1.单例模式没有抽象层,单例模式的扩展较困那(开闭原则) 2.单例类的职责过重,既提供了业务方法,又提供了创建对象的方法,将对象的创建和对象本身的功能耦合在一起(违反单一职责原则,但是似乎又无 ...

  9. 一个牛人给Java初学者的建议

    学习Java的同学注意了!!! 学习过程中遇到什么问题或者想获取学习资源的话,欢迎加入Java学习交流群,群号码:618528494  我们一起学Java! 给初学者之一:浅谈Java及应用学java ...

  10. JavaScript 中的执行上下文和调用栈是什么?

    http://zcfy.cc/article/what-is-the-execution-context-amp-stack-in-javascript-by-david-shariff-4007.h ...