【LG4103】[HEOI2014]大工程
【LG4103】[HEOI2014]大工程
题面
题解
先建虚树,下面所有讨论均是在虚树上的。
对于第一问:直接统计所有树边对答案的贡献即可。
对于第\(2,3\)问:记\(f[x]\)表示在\(x\)的子树内离\(x\)距离最远的关键点的距离,\(g[x]\)表示在\(x\)的子树内离\(x\)距离最近的关键点的距离。
具体更新以\(f[x]\)为例:
访问到\(v\in son_x\),
如果以前访问过的点中有关键点,则有\(f[x]=max(f[x],f[v]+dis(u,v)+f[x])\),
每次还要向上传递,即\(f[x]=max(f[x],f[v]+dis(u,v))\)。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e6 + 5;
struct Graph { int to, next; } e[MAX_N << 2];
int fir1[MAX_N], fir2[MAX_N], e_cnt;
void clearGraph() {
memset(fir1, -1, sizeof(fir1));
memset(fir2, -1, sizeof(fir2));
}
void Add_Edge(int *fir, int u, int v) {
e[e_cnt] = (Graph){v, fir[u]};
fir[u] = e_cnt++;
}
namespace Tree {
int fa[MAX_N], dep[MAX_N], size[MAX_N], top[MAX_N], son[MAX_N], dfn[MAX_N], tim;
void dfs1(int x) {
dfn[x] = ++tim;
size[x] = 1, dep[x] = dep[fa[x]] + 1;
for (int i = fir1[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa[x]) continue;
fa[v] = x; dfs1(v); size[x] += size[v];
if (size[v] > size[son[x]]) son[x] = v;
}
}
void dfs2(int x, int tp) {
top[x] = tp;
if (son[x]) dfs2(son[x], tp);
for (int i = fir1[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa[x] || v == son[x]) continue;
dfs2(v, v);
}
}
int LCA(int x, int y) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
}
using Tree::LCA; using Tree::dfn; using Tree::dep;
int N, M, K, a[MAX_N];
bool key[MAX_N];
int f[MAX_N], g[MAX_N], s[MAX_N];
bool cmp(int i, int j) { return dfn[i] < dfn[j]; }
void build() {
static int stk[MAX_N], top;
sort(&a[1], &a[K + 1], cmp);
stk[top = 1] = 1; fir2[1] = -1;
e_cnt = 0;
for (int i = 1; i <= K; i++) {
key[a[i]] = 1;
if (a[i] == 1) continue;
int lca = LCA(stk[top], a[i]);
if (lca != stk[top]) {
while (dfn[lca] < dfn[stk[top - 1]]) {
int u = stk[top], v = stk[top - 1];
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
--top;
}
if (dfn[lca] > dfn[stk[top - 1]]) {
fir2[lca] = -1; int u = stk[top], v = lca;
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
stk[top] = lca;
}
else {
int u = lca, v = stk[top--];
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
}
}
fir2[a[i]] = -1, stk[++top] = a[i];
}
for (int i = 1; i < top; i++) {
int u = stk[i], v = stk[i + 1];
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
}
}
long long ans1;
int ans2, ans3;
void Dp(int x, int fa) {
s[x] = key[x], f[x] = 0, g[x] = (key[x] ? 0 : 1e9);
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa) continue;
Dp(v, x);
}
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to, w = dep[v] - dep[x];
if (v == fa) continue;
ans1 += 1ll * (K - s[v]) * s[v] * w;
if (s[x] > 0) {
ans2 = min(ans2, g[x] + w + g[v]);
ans3 = max(ans3, f[x] + w + f[v]);
}
g[x] = min(g[x], g[v] + w);
f[x] = max(f[x], f[v] + w);
s[x] += s[v];
}
key[x] = 0;
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
clearGraph();
N = gi();
for (int i = 1; i < N; i++) {
int u = gi(), v = gi();
Add_Edge(fir1, u, v), Add_Edge(fir1, v, u);
}
Tree::dfs1(1), Tree::dfs2(1, 1);
M = gi();
while (M--) {
ans1 = 0, ans2 = 1e9, ans3 = 0;
K = gi(); for (int i = 1; i <= K; i++) a[i] = gi();
build();
Dp(1, 0);
printf("%lld %d %d\n", ans1, ans2, ans3);
}
return 0;
}
【LG4103】[HEOI2014]大工程的更多相关文章
- [BZOJ3611][Heoi2014]大工程
[BZOJ3611][Heoi2014]大工程 试题描述 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 ...
- bzoj 3611 [Heoi2014]大工程(虚树+DP)
3611: [Heoi2014]大工程 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 408 Solved: 190[Submit][Status] ...
- 3611: [Heoi2014]大工程
3611: [Heoi2014]大工程 链接 分析: 树形dp+虚树. 首先建立虚树,在虚树上dp. dp:sum[i]为i的子树中所有询问点之间的和.siz[i]为i的子树中有多少询问点,mn[i] ...
- P4103 [HEOI2014]大工程
题目 P4103 [HEOI2014]大工程 化简题目:在树上选定\(k\)个点,求两两路径和,最大的一组路径,最小的一组路径 做法 关键点不多,建个虚树跑一边就好了 \(sum_i\)为\(i\)子 ...
- BZOJ2286 [Sdoi2011]消耗战 和 BZOJ3611 [Heoi2014]大工程
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6371 Solved: 2496[Submit][Statu ...
- 【BZOJ3611】[Heoi2014]大工程 欧拉序+ST表+单调栈
[BZOJ3611][Heoi2014]大工程 Description 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶 ...
- [Bzoj3611][Heoi2014]大工程(虚树)
3611: [Heoi2014]大工程 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 2000 Solved: 837[Submit][Status ...
- [BZOJ3611][Heoi2014]大工程(虚树上DP)
3611: [Heoi2014]大工程 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 2464 Solved: 1104[Submit][Statu ...
- [HEOI2014]大工程
题目描述 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通道需要的代价为树上 ...
随机推荐
- Python ,pickle
@Python pickle模块学习 pickle提供了一个简单的持久化功能.可以将对象以文件的形式存放在磁盘上. ---------------------------------------- ...
- weblogic远程调试XMLDecoder RCE CVE-2017-10271
首先说一下远程调试的配置,首先在weblogic的启动文件加入如下配置,开启服务器远程调试端口就是9999: 第二步,建立一个java的空项目. 第三步将weblogic的所有jar包拷出来,放到一个 ...
- Tomcat中的Filter
Filter 节选部分源码.源码版本 Tomcat8.5 说明 filter 是 Servlet 规范 filter 是在 ,执行 Servlet.service方法之前执行 Filter相关接口 p ...
- DPDK安装依赖项合集 环境合集
前言 在dpdk编译过程中,由于一些依赖项的限制,dpdk在纯净的系统上安装需要花一些功夫.本文总结了编译dpdk所需的依赖项,并归纳了安装合集,在安装过程上可以省下大量的搜索时间. 使用系统 ubu ...
- 决策树 - 可能是CART公式最严谨的介绍
目录 决策树算法 ID3算法[1] C4.5 改进[1] "纯度"度量指标:信息增益率 离散化处理 CART(分类与回归树,二叉) 度量指标 二值化处理 不完整数据处理 CART生 ...
- oracle基础教程oracle客户端详解
oracle基础教程oracle客户端工具详解 参考网址:http://www.oraclejsq.com/article/010100114.html 该教程介绍了oracle自带客户端sqlplu ...
- 仿手机QQ消息小红点动画2
前言 上一篇把动画的实现步骤大致理清,需要确认小尾巴的绘制区域,关键就是确定4个顶点的位置.大家可以根据需要,选择不同的计算方式. 今天,要实现: 文字的添加 尾巴拉长用弧形代替直线 下面是现在的效果 ...
- to meet you
1:Java特性 (1)平台无关性 一次编译到处运行 (2)GC 垃圾回收机制 (3)语言特性 泛型-反射机制-lambda表达式 (4)面向对象 面向对象语言-三大特性(封装,继承,多态) (5)类 ...
- Eclipse部署Web项目,常用操作和常见错误的解决方案
部署Web项目到tomcat 在eclipse中找到Servers项,打开服务器(F3)(建议直接删除服务器,重新建立再设置比较好)1.Servers Locations 中选择Use Tomcat ...
- 这次的PION的总结
这次的PION的总结 果然不出所料,才\(129\)分. 同级的巨佬们\(170,180,\color {red}{280}\)\(\small{wc这什么神仙啊QAQ}\),都比我强 那我还有什么可 ...