划分关系

姑且这么叫着
设满足性质 \(A\) 的集合为 \(S_A\),每个元素有标号
如果 \(S_B\) 是由若干个 \(S_A\) 组成的一个大集合
设 \(a_i\) 表示大小为 \(i\) 的 \(S_A\) 的个数
设 \(b_i\) 表示大小为 \(i\) 的 \(S_B\) 的个数
构造指数级生成函数
\[A(x)=\sum_{i=0}^{\infty}a_i\frac{x^i}{i!}\]
\[B(x)=\sum_{i=0}^{\infty}b_i\frac{x^i}{i!}\]
\(A\) 和 \(B\) 有如下关系
\(e^{A(x)}=B(x)\)
考虑枚举 \(S_B\) 可以分成几个 \(S_A\),因为是有序的,那么
\[B(x)=\sum_i\frac{A^i(x)}{i!}=e^{A(x)}\]

一些例子

1

设 \(f_i\) 表示不要求连通的 \(i\) 个点 的 \(DAG\) 的方案数
设 \(g_i\) 表示连通的 \(i\) 个点 的 \(DAG\) 的方案数
构造指数级生成函数
\[F(x)=\sum_{i=0}^{\infty}f_i\frac{x^i}{i!}\]
\[G(x)=\sum_{i=0}^{\infty}g_i\frac{x^i}{i!}\]
那么
\[F(x)=e^{G(x)},G(x)=ln F(x)\]

2

设 \(f_i\) 表示 \(i\) 个点 的简单无向连通图的方案数
简单无向图的指数级生成函数
\[G(x)=\sum_{i=0}^{\infty}2^{\binom{i}{2}}\frac{x^i}{i!}\]
简单无向连通图的指数级生成函数
\[F(x)=\sum_{i=0}^{\infty}f_i\frac{x^i}{i!}\]
\[G(x)=e^{F(x)}, F(x)=ln G(x)\]

一类划分关系和指数级生成函数,多项式exp的关系的更多相关文章

  1. Luogu4389 付公主的背包(生成函数+多项式exp)

    显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv).将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi).但这个多项式的项数是Σ ...

  2. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  3. LuoguP4389 付公主的背包【生成函数+多项式exp】

    题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...

  4. P4389-付公主的背包【生成函数,多项式exp】

    正题 题目链接:https://www.luogu.com.cn/problem/P4389 题目大意 \(n\)种物品,第\(i\)种大小为\(v_i\),数量无限.对于每个\(s\in[1,m]\ ...

  5. 【NOI2019模拟2019.6.27】B (生成函数+整数划分dp|多项式exp)

    Description: \(1<=n,k<=1e5,mod~1e9+7\) 题解: 考虑最经典的排列dp,每次插入第\(i\)大的数,那么可以增加的逆序对个数是\(0-i-1\). 不难 ...

  6. Gym102028G Shortest Paths on Random Forests 生成函数、多项式Exp

    传送门 神仙题-- 考虑计算三个部分:1.\(n\)个点的森林的数量,这个是期望的分母:2.\(n\)个点的所有森林中存在最短路的点对的最短路径长度之和:3.\(n\)个点的所有路径中存在最短路的点对 ...

  7. P5748-集合划分计数【EGF,多项式exp】

    正题 题目链接:https://www.luogu.com.cn/problem/P5748 题目大意 求将\(n\)的排列分成若干个无序非空集合的方案. 输出答案对\(998244353\)取模. ...

  8. 【xsy2978】Product of Roots 生成函数+多项式ln+多项式exp

    题目大意:给你两个多项式$f(x)$和$g(x)$,满足$f(x)=\prod\limits_{i=1}^{n}(a_i+1)$,$g(x)=\prod\limits_{i=1}^{m}(b_i+1) ...

  9. 【WC2019】数树 树形DP 多项式exp

    题目大意 有两棵 \(n\) 个点的树 \(T_1\) 和 \(T_2\). 你要给每个点一个权值吗,要求每个点的权值为 \([1,y]\) 内的整数. 对于一条同时出现在两棵树上的边,这条边的两个端 ...

随机推荐

  1. PlistBuddy简单使用

    PlistBuddy简单使用 由于PlistBuddy并不在Mac默认的Path里,所以我们得通过绝对路径来引用这个工具: 查看帮助 /usr/libexec/PlistBuddy --help 下面 ...

  2. 【Quartz】Spring Boot使用properties文件配置Quartz

    (1)在resource目录下新建quartz.properties文件 #============================================================== ...

  3. Python抓取远程文件获取真实文件名

    用urllib下载远程文件并转存到hdfs服务器,在下载时,下载地址中不一定包含文件名,需要从连接信息中获取. 1 file_url = request.form.get('file_url') 2 ...

  4. python全栈开发_day15_函数回调和模块

    一:函数回调 def a(fn=None): print("run1") if fn: fn() print("run 2") def b(): print(& ...

  5. 关于Arduino串口读写HEX

    每次和硬件层进行调试的时候,就容易遇到数据格式问题.这不,继上次Matlab上的hex发送后,又遇到了Arduino上接收hex,并进行对比处理的问题.由于单片机级别的处理器只能以字节形式接收,因此无 ...

  6. DB2 Package Issues and Solution

    Client 从 10.1 升级到11.1之后,而server端的DB 是10.1 版本,当客户执行sql语句时候报错: select * from ebcc.eol_item_info where ...

  7. windows系统PHP7开启curl_init

    1.php.ini,开启extension=php_curl.dll,去掉去掉前面的“;” 2.检查php.ini的extension_dir值是哪个目录(也就是插件扩展目录,比如php_curl.d ...

  8. ubuntu设置root权限默认密码

    1.默认root密码是随机的,即每次开机都有一个新的root密码.我们可以在终端输入命令 sudo passwd,然后输入当前用户的密码2.终端会提示我们输入新的密码并确认,此时的密码就是root新密 ...

  9. Manjaro安装笔记

    安装后就可以先配置国内的软件源.使用以下命令: #排列源 sudo pacman-mirrors -g https://www.jianshu.com/p/f2c9ee00698c https://w ...

  10. 1-1、create-react-app 配置 mobx

    1.用npx create-react-app my-app安装项目 2.cd my-app 3.执行 npm  run eject  让配置文件可见 4.npm install --saveDev ...