洛谷 P1987 摇钱树
题目戳
题目描述
Cpg 正在游览一个梦中之城,在这个城市中有n棵摇钱树。。。这下,可让Cpg看傻了。。。可是Cpg只能在这个城市中呆K天,但是现在摇钱树已经成熟了,每天每棵都会掉下不同的金币(不属于Cpg!)。Cpg每天可以砍掉其中一颗,并获得其树上说有的金币(怎么会有这种好事。。。)。请你帮助Cpg算出他在这K天中最多能获得多少金币。
输入输出格式
输入格式:
每个文件中有不超过10组测试数据。
每组测试数据:
第一行两个整数n,K (1<=K<=n<=1000)
第二行n个整数Mi (Mi <= 100000).表示Cpg刚看到这n棵树时每刻树上的金币数。
第三行n个整数 Bi.(Bi<=1000)表示每颗摇钱树,每天将会掉落的金币。
以n=K=0结束。
输出格式:
对每组测试数据,输出仅一行,Cpg在K天中能获得的最大金币数。
输入输出样例
输入样例#1:
3 3
10 20 30
4 5 6
4 3
20 30 40 50
2 7 6 5
0 0
输出样例#1:
47 104
Solution:
首先,吐槽一下题目数据,没有指出Mi>=Bi,大家应该把这个当作隐藏条件。至于思路,我们先思考,很明显若只选1棵树,那就选价值最大的,若要选多棵树,则要先选消耗最大的(不一定价值最大)。为什么呢?假设我们有3棵树且要选全部,每棵价值和每次消耗分别为m1,m2,m3;b1,b2,b3;则总价值=m1+m2+m3-k1*b1-k2*b2-k3*b3,其中k为第几次选-1,很明显消耗的大的系数要小,即消耗大的要先取。以此我们可以推及到n棵树选k棵的情况(明显就是dp了嘛),先按消耗从大到小贪心排序,这样去取肯定保证最优,然后考虑dp,设f[i][j]表示前i棵树选j棵得到的最大值,则很容易得到状态转移方程:f[i][j]=max(f[i-1][j],f[i-1][j-1]+max(0,m[i]-b[i]*(j-1))) 。
代码:
#include<bits/stdc++.h>
#pragma GCC optimize(2)
using namespace std;
#define ll long long
#define il inline
int n,k,a[],p[],f[][],ans;
struct pig{
int a,p;
}zhu[];
il bool cmp(pig a,pig b){return a.p>b.p;}
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il int max(int a,int b){if(a>b)return a;return b;}
int main()
{
while(){
n=gi(),k=gi();
if(n==&&k==)return ;
ans=;
memset(f,,sizeof(f));
for(int i=;i<=n;i++)zhu[i].a=gi();
for(int i=;i<=n;i++)zhu[i].p=gi();
sort(zhu+,zhu+n+,cmp);
for(int i=;i<=k;i++)
for(int j=;j<=n;j++)
{
int x=zhu[j].a-zhu[j].p*(i-);
x=x>?x:;
f[j][i]=max(f[j-][i],f[j-][i-]+x);
}
for(int i=;i<=k;i++)ans=max(f[n][i],ans);
printf("%d\n",ans);
}
return ;
}
洛谷 P1987 摇钱树的更多相关文章
- 洛谷 - P1987 - 摇钱树 - dp - 贪心
https://www.luogu.org/problemnew/show/P1987 这道题,假如是n==k,也就是把所有的树都砍完,我就知道要贪心去做,因为树给的初始金币是固定的,每天掉金币,当然 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP
题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...
- 洛谷P1710 地铁涨价
P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交 讨论 题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...
- 洛谷P1371 NOI元丹
P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交 讨论 题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...
- 洛谷P1538迎春舞会之数字舞蹈
题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...
- 洛谷八月月赛Round1凄惨记
个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学 ...
随机推荐
- RHCE模拟考试
真实考试环境说明: 你考试所用的真实物理机器会使用普通账号自动登陆,登陆后,桌面会有两个虚拟主机图标,分别是system1和system2.所有的考试操作都是在system1和system2上完成.S ...
- Windows下Mongodb安装部署
1.下载安装包 mongodb-win32-x86_64-enterprise-windows-64-3.6.4.zip 解压 安装失败(当前环境windows server2012 R2):已验证可 ...
- Maven私库
<server> <id>releases</id> <username>admin</username> <password> ...
- 大O算法
大O计法:根据执行次数计算#sum = (1+n)*n/2://执行了一次,即为O(1)#for(i=0;i<n;i++);//执行了n次,即为O(n)#算法的时间复杂度:T(n) = O(f( ...
- linux中使用wget设置参数防止中文乱码问题
在linux中一般会用到wget命令来请求远程的某个文件,此时,文件中会有一些中文字符或者中文汉字,要保持不出现"乱码"就需要在后面加上参数,如下图所示: 其中的 --restri ...
- Python3 函数式编程自带函数
一 map函数 引子 需求1:num1=[1,2,3,4],我的需求是把num1中的每个元素平方后组成新列表. ret = [] num1 = [1,2,3,4] for i in num1: ret ...
- myeclipse生成类的帮助文档
http://blog.csdn.net/tabactivity/article/details/11807233
- 软工 · BETA 版冲刺前准备(团队)
软工 · BETA 版冲刺前准备(团队) 过去存在的问题 组员之间缺乏沟通,前后端缺乏沟通协作 组员积极性不高 基础知识不够扎实 手动整合代码效率过低 我们已经做了哪些调整/改进 通过会议加强组员之间 ...
- 博弈---尼姆博奕(Nimm Game)(重点)
尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的 物品,规定每次至少取一个,多者不限,最后取光者得胜. 这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示 ...
- mvc4 找到多个与名为“xx”的控制器匹配的类型
asp.net mvc4 添加分区出现错误 找到多个与名为“home”的控制器匹配的类型 会出现如下错误”找到多个与名为“home”的控制器匹配的类型“ 在RouteConfig文件中添加命名空间可解 ...