Oil Skimming

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2917    Accepted Submission(s): 1210

Problem Description

Thanks to a certain "green" resources company, there is a new profitable industry of oil skimming. There are large slicks of crude oil floating in the Gulf of Mexico just waiting to be scooped up by enterprising oil barons. One such oil baron has a special plane that can skim the surface of the water collecting oil on the water's surface. However, each scoop covers a 10m by 20m rectangle (going either east/west or north/south). It also requires that the rectangle be completely covered in oil, otherwise the product is contaminated by pure ocean water and thus unprofitable! Given a map of an oil slick, the oil baron would like you to compute the maximum number of scoops that may be extracted. The map is an NxN grid where each cell represents a 10m square of water, and each cell is marked as either being covered in oil or pure water.
 



Input

The input starts with an integer K (1 <= K <= 100) indicating the number of cases. Each case starts with an integer N (1 <= N <= 600) indicating the size of the square grid. Each of the following N lines contains N characters that represent the cells of a row in the grid. A character of '#' represents an oily cell, and a character of '.' represents a pure water cell.
 



Output

For each case, one line should be produced, formatted exactly as follows: "Case X: M" where X is the case number (starting from 1) and M is the maximum number of scoops of oil that may be extracted.
 



Sample Input

1
6
......
.##...
.##...
....#.
....##
......
 



Sample Output

Case 1: 3
 



Source

 
每个‘#’向其左边和上边的‘#’连边,然后跑最大匹配
//2017-08-26
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ;
const int M = ;
int head[N], tot;
struct Edge{
int to, next;
}edge[M]; void init(){
tot = ;
memset(head, -, sizeof(head));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} int n;
int matching[N];
int check[N];
string G[];
int id[][], idcnt; bool dfs(int u){
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!check[v]){//要求不在交替路
check[v] = ;//放入交替路
if(matching[v] == - || dfs(matching[v])){
//如果是未匹配点,说明交替路为增广路,则交换路径,并返回成功
matching[u] = v;
matching[v] = u;
return true;
}
}
}
return false;//不存在增广路
} //hungarian: 二分图最大匹配匈牙利算法
//input: null
//output: ans 最大匹配数
int hungarian(){
int ans = ;
memset(matching, -, sizeof(matching));
for(int u = ; u < idcnt; u++){
if(matching[u] == -){
memset(check, , sizeof(check));
if(dfs(u))
ans++;
}
}
return ans;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputG.txt", "r", stdin);
int T, kase = ;
cin>>T;
while(T--){
cin>>n;
init();
idcnt = ;
for(int i = ; i < n; i++){
cin>>G[i];
for(int j = ; j < n; j++){
if(G[i][j] == '#'){
id[i][j] = idcnt++;
if(i->= && G[i-][j] == '#')
add_edge(id[i][j], id[i-][j]);
if(j->= && G[i][j-] == '#')
add_edge(id[i][j], id[i][j-]);
}
}
}
cout<<"Case "<<++kase<<": "<<hungarian()<<endl;
} return ;
}

HDU4185(KB10-G 二分图最大匹配)的更多相关文章

  1. POJ2239 Selecting Courses(二分图最大匹配)

    题目链接 N节课,每节课在一个星期中的某一节,求最多能选几节课 好吧,想了半天没想出来,最后看了题解是二分图最大匹配,好弱 建图: 每节课 与 时间有一条边 #include <iostream ...

  2. UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

    二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). ...

  3. 【网络流#6】POJ 3041 Asteroids 二分图最大匹配 - 《挑战程序设计竞赛》例题

    学习网络流中ing...作为初学者练习是不可少的~~~构图方法因为书上很详细了,所以就简单说一说 把光束作为图的顶点,小行星当做连接顶点的边,建图,由于 最小顶点覆盖 等于 二分图最大匹配 ,因此求二 ...

  4. [HDU] 2063 过山车(二分图最大匹配)

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=2063 女生为X集合,男生为Y集合,求二分图最大匹配数即可. #include<cstdio> ...

  5. [POJ] 1274 The Perfect Stall(二分图最大匹配)

    题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...

  6. POJ - 1422 Air Raid 二分图最大匹配

    题目大意:有n个点,m条单向线段.如今问要从几个点出发才干遍历到全部的点 解题思路:二分图最大匹配,仅仅要一条匹配,就表示两个点联通,两个点联通仅仅须要选取当中一个点就可以,所以有多少条匹配.就能够减 ...

  7. zoj1654 Place the Robots 二分图最大匹配

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=654 将每一行的包含空地的区域编号 再将每一列的包含空地的区域编号 然 ...

  8. HDU 2255 奔小康赚大钱(带权二分图最大匹配)

    HDU 2255 奔小康赚大钱(带权二分图最大匹配) Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊 ...

  9. 二分图最大匹配:匈牙利算法的python实现

    二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是 ...

随机推荐

  1. 564. Find the Closest Palindrome

    Given an integer n, find the closest integer (not including itself), which is a palindrome. The 'clo ...

  2. UPX源码分析——加壳篇

    0x00 前言 UPX作为一个跨平台的著名开源压缩壳,随着Android的兴起,许多开发者和公司将其和其变种应用在.so库的加密防护中.虽然针对UPX及其变种的使用和脱壳都有教程可查,但是至少在中文网 ...

  3. 跟着刚哥学习Spring框架--事务配置(七)

    事务 事务用来保证数据的完整性和一致性. 事务应该具有4个属性:原子性.一致性.隔离性.持久性.这四个属性通常称为ACID特性.1.原子性(atomicity).一个事务是一个不可分割的工作单位,事务 ...

  4. spring-boot集成mybatis,用redis做缓存

    网上有很多例子了,执行源码起码有3个,都是各种各样的小问题. 现在做了个小demo,实现spring-boot 用redis做缓存的实例,简单记录下思路,分享下源码. 缓存的实现,分担了数据库的压力, ...

  5. Vue2.5开发去哪儿网App 首页开发

    主页划 5 个组件,即 header  icon  swiper recommend weekend 一. header区域开发 1. 安装 stylus npm install stylus --s ...

  6. Unity使用Rider作为IDE的体验

    Rider 2017.2.1比较完整的支持Unity开发. 通过添加插件代码实现了直接选择Rider作为编辑器. 支持调试. 支持双击跳转代码. Alt+Insert可以插入Unity event函数 ...

  7. spring@Transactional注解事务不回滚不起作用无效的问题处理

    这几天在项目里面发现我使用@Transactional注解事务之后,抛了异常居然不回滚.后来终于找到了原因. 如果你也出现了这种情况,可以从下面开始排查. 一.特性先来了解一下@Transaction ...

  8. 一口一口吃掉Hexo(四)

    如果你想得到更好的阅读效果,请访问我的个人网站 ,版权所有,未经许可不得转载! 人总是不会满足于现状,接下来我们就可以让我们的朋友们通过独立域名访问我们的网站了,但是这肯定是要花点钱的,所以这篇文章难 ...

  9. Java 中的队列 Queue

    一.队列的定义 我们都知道队列(Queue)是一种先进先出(FIFO)的数据结构,Java中定义了java.util.Queue接口用来表示队列.Java中的Queue与List.Set属于同一个级别 ...

  10. JAVA与DOM解析器提高(DOM/SAX/JDOM/DOM4j/XPath) 学习笔记二

    要求 必备知识 JAVA基础知识.XML基础知识. 开发环境 MyEclipse10 资料下载 源码下载   sax.dom是两种对xml文档进行解析的方法(没有具体实现,只是接口),所以只有它们是无 ...