代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=5e5+10; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} struct node{
int nxt,to;
}e[maxn<<1];
int tot=1,head[maxn];
inline void add_edge(int from,int to){
e[++tot]=node{head[from],to},head[from]=tot;
} int n,q,root,dep[maxn],f[maxn][21]; void dfs(int u,int fa){
dep[u]=dep[fa]+1,f[u][0]=fa;
for(int i=1;i<=20;i++)f[u][i]=f[f[u][i-1]][i-1];
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;if(v==fa)continue;
dfs(v,u);
}
} int lca(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=20;i>=0;i--)if(dep[f[x][i]]>=dep[y])x=f[x][i];
if(x==y)return x;
for(int i=20;i>=0;i--)if(f[x][i]^f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
} void read_and_parse(){
n=read(),q=read(),root=read();
for(int i=1,x,y;i<n;i++){
x=read(),y=read();
add_edge(x,y),add_edge(y,x);
}
dfs(root,0);
} void solve(){
int x,y;
while(q--){
x=read(),y=read();
printf("%d\n",lca(x,y));
}
} int main(){
read_and_parse();
solve();
return 0;
}

【模板】LCA的更多相关文章

  1. 算法模板——LCA(最近公共祖先)

    实现的功能如下——在一个N个点的无环图中,共有N-1条边,M个访问中每次询问两个点的距离 原理——既然N个点,N-1条边,则说明这是一棵树,而且联通.所以以1为根节点DFS建树,然后通过求两点的LCA ...

  2. [模板]LCA

    洛谷P3379 注意:不能与LCA搞混(打久了就会发现两个还是有很大区别的) 位运算一定要加括号! for循环从0到logn还是从logn到0看当前的状态更适合哪种 第53行预处理一定要注意!(因为没 ...

  3. [模板]LCA的倍增求法解析

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  4. 模板 树上求LCA 倍增和树链剖分

    //233 模板 LCA void dfs(int x,int f){ for(int i=0;i<E[x].size();i++){ int v = E[x][i]; if(v==f)cont ...

  5. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  6. HDU 2586(LCA欧拉序和st表)

    什么是欧拉序,可以去这个大佬的博客(https://www.cnblogs.com/stxy-ferryman/p/7741970.html)巨详细 因为欧拉序中的两点之间,就是两点遍历的过程,所以只 ...

  7. 浅谈倍增法求解LCA

    Luogu P3379 最近公共祖先 原题展现 题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入格式 第一行包含三个正整数 \(N,M,S\),分别表示树的结点个数.询问 ...

  8. NOIP2015游记——一次开心又失望的旅行

    啊,一年一度的NOIP终于是结束了 以前的大神都有写自己的感受 然而我居然给忘了!!!! 吓得我赶紧来写一份游记 Day.-INF--出发前一个星期 机智的我选择了停课 就是为了OIER这伟大而又光荣 ...

  9. 洛谷P3379 【模板】最近公共祖先(LCA)

    P3379 [模板]最近公共祖先(LCA) 152通过 532提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 为什么还是超时.... 倍增怎么70!!题解好像有 ...

  10. LCA倍增算法的错误与模板

    先上我原来的错误的代码 type node=^link; link=record num:int64; next:node; end; var fa:..,..] of int64; dep:..] ...

随机推荐

  1. # 2017-2018-2 20155319『网络对抗技术』Exp5:MSF基础应用

    2017-2018-2 20155319『网络对抗技术』Exp5:MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:使用者利用漏洞进行攻击 ...

  2. 7、mysql高级特性

    7.1.分区表 7.1.1 分区表的原理 7.1.2分区表的类型 7.1.3如何使用分区表 7.1.4什么情况下出问题 7.1.5查询优化 使用explain 来分析sql使用的分区表 7.1.6合并 ...

  3. 工具神器推荐 Vox 和 search everything

    工具神器推荐 Vox 和 search everything vox官网: http://www.wox.one/

  4. git 创建标签和删除标签

    创建标签 在Git中打标签非常简单,首先,切换到需要打标签的分支上: $ git branch * dev master $ git checkout master Switched to branc ...

  5. nginx location 正则匹配

    nginx 统计语句1.根据访问IP统计UV awk '{print $1}' access.log|sort | uniq -c |wc -l2.统计访问URL统计PV awk '{print $7 ...

  6. VMware Tools安装和卸载

    1.卸载 a.查找 vmware-uninstall-tools.pl 路径:sudo find / -name 'vmware-uninstall-tools.pl' b.切换到 vmware-un ...

  7. 计算机基础知识 一 Basic knowledge of computers One

    计算机硬件由CPU(Central Processing Unit).存储器.输入设备.输出设备组成. CPU通常由控制单元(控制器)和算数逻辑单元(运算器)组成. 运算器:负责进行算数运算和逻辑运算 ...

  8. React笔记-事件注册

    事件机制 本系列以React v16.8.3为基础进行源码分析 React事件主要分为两部分: 事件注册与事件分发.下面先从事件注册说起. 事件注册 假设我们的程序如下: <!DOCTYPE h ...

  9. Delphi中 弹出框的用法

    Delphi中的提示框有 Application.MessageBox  ShowMessage messagedlg 个人认为 相对来说 Application.MessageBox 更加灵活 也相 ...

  10. hybrid项目h5页路由回退问题解决

    问题描述: 在hybrid项目里现有h5页A.B.C三个页面,均采用vue开发.其中A.B页采用原生头部,C页采用h5头部.A页通过点击a链接进入B页,B页以同样的方式进入C页,再依次点击各业返回按钮 ...