http://www.lydsy.com/JudgeOnline/problem.php?id=2440 (题目链接)

题意

  求第K个不含有完全平方因子的数

Solution

  没想到莫比乌斯还可以用来容斥,好6啊。右转题解→_→:LCF

  蜜汁被狙人:jump

细节

  LL,还TLE了2发。。。

代码

// bzoj2440
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
int mu[maxn],vis[maxn],p[maxn],K; int sigema(int k) {
int ans=0;
for (int i=1;i*i<=k;i++) ans+=mu[i]*(k/(i*i));
return ans;
}
int main() {
mu[1]=1;
for (int i=2;i<maxn;i++) {
if (!vis[i]) p[++p[0]]=i,mu[i]=-1;
for (int j=1;j<=p[0] && p[j]*i<maxn;j++) {
vis[p[j]*i]=1;
if (i%p[j]==0) {mu[p[j]*i]=0;break;}
else mu[p[j]*i]=-mu[i];
}
}
int T;scanf("%d",&T);
while (T--) {
scanf("%d",&K);
int l=0,r=inf,ans;
while (l<=r) {
int mid=((LL)l+r)>>1;
if (sigema(mid)<K) l=mid+1;
else ans=mid,r=mid-1;
}
printf("%d\n",ans);
}
return 0;
}

【bzoj2440】 中山市选2011—完全平方数的更多相关文章

  1. BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4920  Solved: 2389[Submit][Sta ...

  2. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  3. BZOJ2440 [中山市选2011]完全平方数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  4. 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)

    传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...

  5. BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  6. 题解【bzoj2440 [中山市选2011]完全平方数】

    Description 求第 \(k\) 个不含平方因子的正整数.多组询问.\(k \leq 10^9, T \leq 50\) Solution 网上的题解几乎都是容斥,这里给一个简单的也挺快的做法 ...

  7. bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...

  8. BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数

    emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...

  9. 【学术篇】bzoj2440 [中山市选2011]完全平方数

    -题目の传送门- 题目大意: 找到第k个无平方因子数. 看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法. 考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个 ...

  10. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. IDEA创建Scala项目

    一.安装插件 见Scala入门篇 二.新建项目 选择new project,其中SBT相当于精简版的maven,其他的待补充.这里选择IDEA 填写信息,选择Scala SDK 在src目录下新建Sc ...

  2. python with原理

    在python2.5+中可以用with来保证关闭打开的文件 with open('hello.txt') as f: do some file operations 为什么要引入with呢? 在之前如 ...

  3. Android开发——JobScheduler机制

    年Google开发大会上指出,如果每个APP都使用这个API,那么可以节约15%到20%的电量. 2.  JobScheduler拥有更多的触发选项 JobScheduler比AlarmManager ...

  4. 《图说VR入门》——DeepoonVR的大鹏(陀螺仪)枪

    <图说VR入门>--VR大朋的(陀螺仪)枪 本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接: http://blog.csdn.net/cartzhang/ar ...

  5. 一段程序的分析——C++析构器,何时析构

    最近在看小甲鱼的视频,有段程序是这么写的: #include <iostream> #include <string> class Pet { public: Pet(std: ...

  6. MFC Timer定时器

    知识点: 定时器Timer 创建定时器 销毁定时器 代码测试 一. 创建定时器 UINT SetTimer( HWND hWnd, // 指定关联定时器的窗口句柄,在MFC版将省略此参数 UINT n ...

  7. Java 中的 try catch 影响性能吗?

    前几天在 code review 时发现有一段代码中存在滥用try catch的现象.其实这种行为我们也许都经历过,刚参加工作想尽量避免出现崩溃问题,因此在很多地方都想着 try catch一下. 但 ...

  8. svn commit时报错 File already exists

    第一步: 删除当前文件所在文件夹,提交commit 第二步: 新建刚才删除的文件夹,并将先前需要commit的文件放到此文件夹下,再次commit 提交

  9. ag使用需要注意的问题

    1.  set env 对比服务器标准配置,修改本地 /etc/apache2/sites-available/default (远程链接服务器的办法: ssh 12x.xxx.xxx.xxx) 2. ...

  10. 作业 20181204-4 互评Final版本

    此作业要求参见:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2478] 组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙 ...