(2018中科大自招最后一题)
设$a_1=1,a_{n+1}=\left(1+\dfrac{1}{n}\right)^3(n+a_n)$证明:
(1)$a_n=n^3\left(1+\sum\limits_{k=1}^{n-1}\dfrac{1}{k^2}\right);
(2)\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)<3$

证明:
1)数学归纳法,略.

$k=1$时候显然成立,$k\ge2$时有如下漂亮的连乘积放缩:

\begin{align*}
\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)&=\prod\limits_{k=1}^n\left(1+\dfrac{1}{k^2(1+\sum\limits_{m=1}^{k-1}\frac{1}{m^2})}\right)\\
&<\prod\limits_{k=1}^n(1+\dfrac{1}{k^2\left(2-\frac{1}{k}\right)})\\
&=\prod\limits_{k=1}^{n}{\dfrac{2k^2-k+1}{2k^2-k}}\\
&<2\prod_{k=2}^{n}{\dfrac{k(2k-1)}{(k-1)(2k+1)}}\\
&=\dfrac{6n}{2n+1}\\
&<3
\end{align*}

如果证明$<8$则变为一道难度降为高考题的题,可以解答如下:

由于
\begin{align*}
\sum\limits_{k=1}^n\dfrac{k}{a_k}& =\sum\limits_{k=1}^n\dfrac{k}{k^3\left(1+\sum\limits_{m=1}^{k-1}\frac{1}{m^2}\right)} \\
& <\sum\limits_{k=1}^n\dfrac{1}{k^2\left(2-\frac{1}{k}\right)}\\
&=\sum\limits_{k=1}^n\dfrac{1}{2k^2-k}\\
&<\sum\limits_{k=1}^n\dfrac{1}{2(k-\frac{3}{4})(k+\frac{1}{4})}\\
&=2-\dfrac{1}{2n+1/2}\\
&<2
\end{align*}

\begin{align*}
\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)& \le\left(\dfrac{\sum\limits_{k=1}^n{(1+\dfrac{k}{a_k}})}{n}\right)^n \\
& <\left(1+\dfrac{2}{n}\right)^n\\
&<e^2<8
\end{align*}

改为$<8$后本质上考察了下面这个重要的极限:

$\lim\limits_{n\longrightarrow +\infty}{(1+\dfrac{1}{n})^n}=e$

练习:证明存在:$n\in N,\prod\limits_{k=1}^n\left(\dfrac{k^2}{k^2+1}\right)<\dfrac{2}{7}$

MT【198】连乘积放缩的更多相关文章

  1. MT【26】ln(1+x)的对数平均放缩

    评:1.某种程度上$ln(1+x)\ge \frac{2x}{2+x}$是最佳放缩. 2.这里涉及到分母为幂函数型的放缩技巧,但是不够强,做不了这题.

  2. MT【167】反复放缩

    已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$1)证明:对任意$n\in N^+,a_n<5$2)证明:不存在$M\le4$, ...

  3. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  4. MT【53】对数平均做数列放缩

    [从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...

  5. MT【22】一道分母为混合型的放缩

    评:指数函数增长>幂函数增长>对数函数增长.

  6. MT【11】对数放缩题

    解答:C 评论:这里讲几个背景知识

  7. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  8. leetcode 198

    198. House Robber You are a professional robber planning to rob houses along a street. Each house ha ...

  9. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

随机推荐

  1. 一个将lambda字符串转化为lambda表达式的公共类

    一个将lambda字符串转化为lambda表达式的公共类.StringToLambda 使用方式如下: var module = new Module(); url = url.ToLower();/ ...

  2. AbelSu的区块链笔记

    最近几年,像比特币.以太坊.ICO.区块链等概念突然成为互联网热门话题,今天写这篇博客,也是做一些笔记,大概说一下对这个的解释和其他相关内容. 区块链: 区块链是分布式数据存储.点对点传输.共识机制. ...

  3. UML类图(Unified Modeling Language Class Diagrams)

    统一建模语言(UML) |  类图 什么是UML? UML是一种用于可视化描述系统,具有广泛用途的建模语言.作为一种标准化的图形语言,在软件工业中被用于软件系统部件的具体化,可视化,结构化描述以及撰写 ...

  4. c# 菜鸟包裹查询

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  5. 20155223 Exp7 网络欺诈防范

    20155223 Exp7 网络欺诈防范 基础问题回答 通常在什么场景下容易受到DNS spoof攻击? 无设防或防护力特别弟弟低的公共局域网,或者是在同一个局域网下. 在日常生活工作中如何防范以上两 ...

  6. 2017-2018-2 《网络对抗技术》 20155302 第二周 Exp1 PC平台逆向破解(5)M

    2017-2018-2 <网络对抗技术> 20155302 第二周 Exp1 PC平台逆向破解(5)M 1-实践目标 1.1-实践介绍 本次实践的对象是一个名为pwn1的linux可执行文 ...

  7. mfc 线程的优先级

    知识点:  线程优先级  获取当前线程句柄  线程优先级设置  线程优先级变动  线程优先级获取 一.线程优先级(Thread priority ) 简单的说就是(线程)的优先级越高,那么就 ...

  8. HTML 中使 footer 始终处于页面底部

    通常在页面中,需要使页脚 footer 部分始终处于底部.当页面高度不够 100% 时, footer 处于页面最底部,当页面内容高于 100% 时,页脚元素可以被撑到最底部. 方法一:绝对定位 &l ...

  9. More Effective C++ Item14:明智运用exception specifications

    使用exception specifications你必须非常仔细去确保,函数调用的子函数.注册的回调函数不会违背约定.而设计模板内部的异常更难确保. 设计回调机制的时候,如果调用方规定了不抛出异常, ...

  10. sudo apt-get update 去除设置的代理

    今天想装个软件(wine),使用 sudo apt-get update 命令时,发现给出很多Ign 语句,总出现 Connecting to proxy.http://10.0.126.1:1312 ...