(2018中科大自招最后一题)
设$a_1=1,a_{n+1}=\left(1+\dfrac{1}{n}\right)^3(n+a_n)$证明:
(1)$a_n=n^3\left(1+\sum\limits_{k=1}^{n-1}\dfrac{1}{k^2}\right);
(2)\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)<3$

证明:
1)数学归纳法,略.

$k=1$时候显然成立,$k\ge2$时有如下漂亮的连乘积放缩:

\begin{align*}
\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)&=\prod\limits_{k=1}^n\left(1+\dfrac{1}{k^2(1+\sum\limits_{m=1}^{k-1}\frac{1}{m^2})}\right)\\
&<\prod\limits_{k=1}^n(1+\dfrac{1}{k^2\left(2-\frac{1}{k}\right)})\\
&=\prod\limits_{k=1}^{n}{\dfrac{2k^2-k+1}{2k^2-k}}\\
&<2\prod_{k=2}^{n}{\dfrac{k(2k-1)}{(k-1)(2k+1)}}\\
&=\dfrac{6n}{2n+1}\\
&<3
\end{align*}

如果证明$<8$则变为一道难度降为高考题的题,可以解答如下:

由于
\begin{align*}
\sum\limits_{k=1}^n\dfrac{k}{a_k}& =\sum\limits_{k=1}^n\dfrac{k}{k^3\left(1+\sum\limits_{m=1}^{k-1}\frac{1}{m^2}\right)} \\
& <\sum\limits_{k=1}^n\dfrac{1}{k^2\left(2-\frac{1}{k}\right)}\\
&=\sum\limits_{k=1}^n\dfrac{1}{2k^2-k}\\
&<\sum\limits_{k=1}^n\dfrac{1}{2(k-\frac{3}{4})(k+\frac{1}{4})}\\
&=2-\dfrac{1}{2n+1/2}\\
&<2
\end{align*}

\begin{align*}
\prod\limits_{k=1}^n\left(1+\dfrac{k}{a_k}\right)& \le\left(\dfrac{\sum\limits_{k=1}^n{(1+\dfrac{k}{a_k}})}{n}\right)^n \\
& <\left(1+\dfrac{2}{n}\right)^n\\
&<e^2<8
\end{align*}

改为$<8$后本质上考察了下面这个重要的极限:

$\lim\limits_{n\longrightarrow +\infty}{(1+\dfrac{1}{n})^n}=e$

练习:证明存在:$n\in N,\prod\limits_{k=1}^n\left(\dfrac{k^2}{k^2+1}\right)<\dfrac{2}{7}$

MT【198】连乘积放缩的更多相关文章

  1. MT【26】ln(1+x)的对数平均放缩

    评:1.某种程度上$ln(1+x)\ge \frac{2x}{2+x}$是最佳放缩. 2.这里涉及到分母为幂函数型的放缩技巧,但是不够强,做不了这题.

  2. MT【167】反复放缩

    已知数列$\{a_n\}$满足:$a_1=1,a_{n+1}=a_n+\dfrac{a_n^2}{n(n+1)}$1)证明:对任意$n\in N^+,a_n<5$2)证明:不存在$M\le4$, ...

  3. MT【71】数列裂项放缩题

    已知${a_n}$满足$a_1=1,a_{n+1}=(1+\frac{1}{n^2+n})a_n.$证明:当$n\in N^+$时, $(1)a_{n+1}>a_n.(2)\frac{2n}{n ...

  4. MT【53】对数平均做数列放缩

    [从最简单的做起]--波利亚 请看下面三道循序渐进不断加细的题. 评:随着右边的不断加细,解决问题的方法也越来越"高端".当然最佳值$ln2$我们可以用相对 容易的方法来证明: $ ...

  5. MT【22】一道分母为混合型的放缩

    评:指数函数增长>幂函数增长>对数函数增长.

  6. MT【11】对数放缩题

    解答:C 评论:这里讲几个背景知识

  7. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  8. leetcode 198

    198. House Robber You are a professional robber planning to rob houses along a street. Each house ha ...

  9. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

随机推荐

  1. 使用fastjson,gson解析null值的时候键保留

    由于业务需求...所以查阅资料,总结如下: 使用gson实现方法:只需要把new Gson()改为: new GsonBuilder().serializeNulls().create(); 就可以了 ...

  2. 十万的License只取决于一个连接

    前段时间看到一份代码,小规模.低难度的一个应用,MVC用到极致,业务逻辑却混成一团麻,应该是中了培训班的毒.现在的程序员,大多是没仔细读过<现代操作系统>,没看过编译原理,不知道堆与栈,没 ...

  3. 20155321 《网络攻防》 Exp2 后门原理与实践

    20155321 <网络攻防> Exp2 后门原理与实践 实验内容 例举你能想到的一个后门进入到你系统中的可能方式? 我觉得人们在平时上网的时候可能会无意识地点击到一些恶意的网站,这些网站 ...

  4. 基于Boost库的HTTP Post函数

    两个函数的区别: 提交表单数据和提交文本数据 表单数据: request_stream << "Content-Type: application/x-www-form-urle ...

  5. 定制 input[type="radio"] 和 input[type="checkbox"] 样式

    表单中,经常会使用到单选按钮和复选框,但是,input[type="radio"] 和 input[type="checkbox"] 的默认样式在不同的浏览器或 ...

  6. PowerBI开发 第八篇:查询参数

    在PowerBI Desktop中,用户可以定义一个或多个查询参数(Query Parameter),参数的功能是为了实现PowerBI的参数化编程,使得Data Source的属性.替换值和过滤数据 ...

  7. arduino新入手体验:三个小实验

    新入手体验:三个小实验 一:一个LED闪烁 控制要求:1个LED灯,每隔50ms闪烁一次 实物连接图: 控制代码: //2018.6/11 ;//定义数字接口10,对应 void setup() { ...

  8. Golang Context 详细介绍

    Golang context 本文包含对context实现上的分析和使用方式,分析部分源码讲解比价多,可能会比较枯燥,读者可以直接跳过去阅读使用部分. ps: 作者本着开源分享的精神撰写本篇文章,如果 ...

  9. PAT甲题题解-1105. Spiral Matrix (25)-(模拟顺时针矩阵)

    题意:给定N,以及N个数.找出满足m*n=N且m>=n且m-n最小的m.n值,建立大小为m*n矩阵,将N个数从大到下顺时针填入矩阵中. #include <iostream> #in ...

  10. Cooperate with Myself

    (一) 第一周的第一批作业们.  且不说一周之内要看完我们的300多页的教材,也不说需要在维基的大批量的文献中海底捞针,单是这个四则运算的生成程序就让我从假期的迷糊状态中幡然觉悟了:哦!惊险刺激的新的 ...