2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)
传送门
题意:给出一个仙人掌森林求其最大独立集。
思路:如果没有环可以用经典的树形dpdpdp解决。
fi,0/1f_{i,0/1}fi,0/1表示第iii个点不选/选的最大独立集。
然后fi,0+=max{fv,0,fv,1},fi,1+=fv,0f_{i,0}+=max\{f_{v,0},f_{v,1}\},f_{i,1}+=f_{v,0}fi,0+=max{fv,0,fv,1},fi,1+=fv,0转移即可。
现在有了环考虑把每个环单独提出来更新一下。
就用个队列把整个环记录下来然后分这个环在原图中dfsdfsdfs出来的最高点选与不选分别dpdpdp更新即可。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
const int N=5e4+5;
int n,m,ans=0,fa[N],dfn[N],low[N],tot=0,f[N][2],g[N][2],q[N],top;
vector<int>e[N];
inline void solve(int rt,int x){
int tmp0=f[rt][0],tmp1=f[rt][1],tmp=x;
q[top=1]=x;
while(x!=rt)x=fa[x],q[++top]=x;
x=tmp;
g[x][0]=f[x][0],g[x][1]=-0x3f3f3f3f;
for(ri i=2;i<=top;++i){
g[q[i]][0]=f[q[i]][0]+max(g[q[i-1]][0],g[q[i-1]][1]);
g[q[i]][1]=f[q[i]][1]+g[q[i-1]][0];
}
tmp1=max(tmp1,g[rt][1]);
g[x][0]=f[x][0],g[x][1]=f[x][1];
for(ri i=2;i<=top;++i){
g[q[i]][0]=f[q[i]][0]+max(g[q[i-1]][0],g[q[i-1]][1]);
g[q[i]][1]=f[q[i]][1]+g[q[i-1]][0];
}
tmp0=max(tmp0,g[rt][0]);
f[rt][0]=tmp0,f[rt][1]=tmp1;
}
void tarjan(int p){
dfn[p]=low[p]=++tot,f[p][1]=1;
for(ri i=0,v;i<e[p].size();++i){
if((v=e[p][i])==fa[p])continue;
if(!dfn[v])fa[v]=p,tarjan(v),low[p]=min(low[p],low[v]);
else low[p]=min(low[p],low[v]);
if(dfn[p]<low[v])f[p][0]+=max(f[v][0],f[v][1]),f[p][1]+=f[v][0];
}
for(ri i=0,v;i<e[p].size();++i)if(fa[v=e[p][i]]!=p&&dfn[p]<dfn[v])solve(p,v);
}
int main(){
n=read(),m=read();
for(ri i=1,u,v;i<=m;++i)u=read(),v=read(),e[u].push_back(v),e[v].push_back(u);
for(ri i=1;i<=n;++i)if(!dfn[i])tarjan(i),ans+=max(f[i][0],f[i][1]);
cout<<ans;
return 0;
}
2019.02.07 bzoj4316: 小C的独立集(仙人掌+树形dp)的更多相关文章
- 2019.02.07 bzoj1487: [HNOI2009]无归岛(仙人掌+树形dp)
传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间 ...
- BZOJ 4316: 小C的独立集 仙人掌 + 树形DP
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MB Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. ...
- [BZOJ4316]小C的独立集 仙人掌?
题目链接 因为xls让我每周模拟一次,然后学习模拟中没有学过的东西.所以就来学圆方树. 本来这道题用不着圆方树,但是圆方树是看yyb的博客学的,他在里面讲一下作为一个引子,所以也来写一下. 首先来Ta ...
- 【BZOJ-4316】小C的独立集 仙人掌DP + 最大独立集
4316: 小C的独立集 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 57 Solved: 41[Submit][Status][Discuss] ...
- bzoj4316: 小C的独立集
Description 图论小王子小C经常虐菜,特别是在图论方面,经常把小D虐得很惨很惨. 这不,小C让小D去求一个无向图的最大独立集,通俗地讲就是:在无向图中选出若干个点,这些点互相没有边连接,并使 ...
- 2018.07.22哨戒炮 II(树形dp)
哨戒炮 II 描述 你的防线成功升级,从原来的一根线变成了一棵树.这棵树有 N 个炮台,炮台与炮台之间 有 N-1 条隧道.你要选择一些炮台安装哨戒炮.在第 i 个炮台上安装哨戒炮得到的防御力为 vi ...
- 小奇的仓库(树形DP)
「题目背景」 小奇采的矿实在太多了,它准备在喵星系建个矿石仓库.令它无语的是,喵星系的货运飞船引擎还停留在上元时代! 「问题描述」 喵星系有n个星球,星球以及星球间的航线形成一棵树. 从星球a到星球b ...
- BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】
题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...
- [BZOJ4316]小C的独立集(圆方树DP)
题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的 ...
随机推荐
- TZOJ 1937 Hie with the Pie(floyd+状压dp)
描述 The Pizazz Pizzeria prides itself in delivering pizzas to its customers as fast as possible. Unfo ...
- Python: AES加密与解密
起源: 视频下载,解析到一个网站时,发现其视频id是用AES加密过的,用的是https://code.google.com/archive/p/crypto-js/这个库.解密很简单的一句js代码: ...
- 【C++ const_cast强制转换】
- js中json知识点
首先,json是一种数据格式,而不能说是一种对象(object).这一点是非常重要的. 起源是不同的语言中数据对象的形式是不一样的,我们为了在不同的语言中传递数据,发明了一种json格式用于消除这种差 ...
- 被遗忘的having
清明节后公司网站搞活动主要功能很简单就是实现一个消费送的功能.比如, 当天消费金额满5000 返回10%,5000 及以下 返 7% 的功能.本身这个功能不是很难,但是 这个功能跟上次的一个 新用户 ...
- C#—Dev XtraTabControl操作总结如动态增加Tab和关闭选项卡方法等
1:显示行号 找到gridview属性 点击事件 CustomDrawRowIndicator private void gridView1_CustomDrawRowIndicator(object ...
- CSS学习总结3:CSS定位
CSS 定位机制 CSS 有三种基本的定位机制:普通流.浮动和绝对定位. 一.普通流 除非专门指定,否则所有框都在普通流中定位.普通流中元素框的位置由元素在(X)HTML中的位置决定.块级元素从上到下 ...
- windows2003服务器,时间每隔1小时自动同步一次
有台服务器的时间总是不对,可能是电池快没电了吧,于是想让它时间保持更新状态,但又不想用第三方软件,在百度上查了一下,还真有方法 HKEY_LOCAL_MACHINE->SYSTEM->Cu ...
- SqlServer添加触发器死锁的原因
之前遇到过SqlServer添加触发器死锁的情况,纠结了很长时间 最近发现原来是因为我在建表的时候,把id设成主键后,系统默认了加一个聚集的索引 就是聚集索引把表锁住了
- PAT 1005 继续(3n+1)猜想 (25)(代码)
1005 继续(3n+1)猜想 (25)(25 分) 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下 ...