题意:给一张无向图,每个点有其点权,边(i,j)的cost是\(val_i\ XOR \ val_j\).现在只给出K个点的权值,求如何安排其余的点,使总花费最小.

分析:题目保证权值不超过32位整型,按每一位k上的值(0 or 1),将点分为两个集合X和Y,X中为1的点,Y为0的点.如果X中的点到Y中的边有边,表示这一点对对结果将产生贡献.用最小的费用将对象划分成两个集合,问题转化为求最小割的问题.

建图:建源点s和汇点t.从s向X中的点建容量为正无穷的边;从Y中的点向t建容量为正无穷的边,对于相邻的点对(ij)分别向对方建一条容量为1的边,跑一遍最大流.之后还需要知道有哪些点该位被修改成了1.从源点出发的点,若不在最小割中,就说明实际选择了该点,将其该位变成1.从源点进行一次dfs即可.

#include<iostream>
#include<cstring>
#include<stdio.h>
#include<algorithm>
#include<string>
#include<cmath>
#include<set>
#include<map>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
const int INF = 0x3f3f3f3f;
typedef int LL;
const int MAXN=1010;//点数的最大值
const int MAXM=400010;//边数的最大值
#define captype int struct SAP_MaxFlow{
struct edgesE{
int from,to,next;
captype cap;
}edges[MAXM];
int eid,head[MAXN];
int gap[MAXN];
int dis[MAXN];
int cur[MAXN];
int pre[MAXN]; void init(){
eid=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int u,int v,captype c,captype rc=0){
edges[eid].from = u;
edges[eid].to=v; edges[eid].next=head[u];
edges[eid].cap=c; head[u]=eid++;
edges[eid].from = v;
edges[eid].to=u; edges[eid].next=head[v];
edges[eid].cap=rc; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0;
int u=sNode;
while(dis[sNode]<n){
if(u==eNode){
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to])
if(Min>edges[i].cap){
Min=edges[i].cap;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edges[i^1].to]){
edges[i].cap-=Min;
edges[i^1].cap+=Min;
}
ans+=Min;
u=edges[inser^1].to;
continue;
}
bool flag = false;
int v;
for(int i=cur[u]; i!=-1; i=edges[i].next){
v=edges[i].to;
if(edges[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
int Mind= n;
for(int i=head[u]; i!=-1; i=edges[i].next)
if(edges[i].cap>0 && Mind>dis[edges[i].to]){
Mind=dis[edges[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans;
dis[u]=Mind+1;
gap[dis[u]]++;
if(u!=sNode) u=edges[pre[u]^1].to; //退一条边
}
return ans;
}
}F; int G[505][505];
int mark[505];
int N,M,K,s,t;
int vis[MAXN];
int id[505];
void build(int dig)
{
F.init();
s=0,t = N+1;
for(int i=1;i<=K;++i){
int u = id[i];
if((1<<dig)&mark[u]){ //s->1
F.AddEdge(s,u,INF);
}
else{ //0->t
F.AddEdge(u,t,INF);
}
}
for(int i=1;i<=N;++i){
for(int j=i+1;j<=N;++j){
if(G[i][j]){
F.AddEdge(i,j,1);
F.AddEdge(j,i,1);
}
}
}
} void dfs(int u,int dig)
{
vis[u] = 1;
mark[u] |= (1<<dig);
for(int i=F.head[u];~i;i=F.edges[i].next){
int v = F.edges[i].to;
if(!vis[v] && F.edges[i].cap){
dfs(v,dig);
}
}
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T; scanf("%d",&T);
int u,v,tmp;
while(T--){
scanf("%d %d",&N, &M);
memset(G,0,sizeof(G));
memset(mark,0,sizeof(mark));
for(int i=1;i<=M;++i){
scanf("%d %d",&u, &v);
G[u][v] = G[v][u] =1;
}
scanf("%d",&K);
for(int i=1;i<=K;++i){
scanf("%d",&u);
scanf("%d",&mark[u]);
id[i] = u;
}
for(int i=0;i<=31;++i){
build(i);
F.maxFlow_sap(s,t,t+1);
memset(vis,0,sizeof(vis));
dfs(s,i);
}
for(int i=1;i<=N;++i){
printf("%d\n",mark[i]);
}
}
return 0;
}

Optimal Marks SPOJ - OPTM (按位枚举-最小割)的更多相关文章

  1. Optimal Marks SPOJ - OPTM

    传送门 一个无向图,每个点有点权,某些点点权确定了,某些点由你来确定,边权为两个点的异或和,要使边权和最小. 这不是一道按位做最小割的大水题么 非常开心地打了,还非常开心地以为有spj,然后非常开心地 ...

  2. Optimal Marks SPOJ - OPTM(最小割)

    传送门 论文<最小割模型在信息学竞赛中的应用>原题 二进制不同位上互不影响,那么就按位跑网络流 每一位上,确定的点值为1的与S连一条容量为INF的有向边.为0的与T连一条容量为INF的有向 ...

  3. 839. Optimal Marks - SPOJ

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  4. Optimal Marks SPOJ 839

    这题远超其他题非常靠近最小割的实际意义: 割边<=>付出代价<=>决定让两个点的值不相同,边权增加 最小割<=>点的值与s一个阵营的与s相同,与t一个阵营的与t相同 ...

  5. spoj 1693 COCONUTS - Coconuts【最小割】

    s向所有信仰1的人连(s,i,1),所有信仰0的人连(i,t,1),对于朋友关系,连接双向边,流量为1.跑最大流的结果即为答案. 考虑这样做的意义.最小割就是把总点集分割为两个点集S,T,使得所有\( ...

  6. ACM/ICPC 之 Dinic+枚举最小割点集(可做模板)(POJ1815)

    最小割的好题,可用作模板. //Dinic+枚举字典序最小的最小割点集 //Time:1032Ms Memory:1492K #include<iostream> #include< ...

  7. [国家集训队]happiness 最小割 BZOJ 2127

    题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...

  8. hdu 2435dinic算法模板+最小割性质

    hdu2435最大流最小割 2014-03-22 我来说两句 来源:hdu2435最大流最小割 收藏 我要投稿 2435 There is a war 题意: 给你一个有向图,其中可以有一条边是无敌的 ...

  9. SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)

    http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...

随机推荐

  1. 漫游Kafka设计篇之消息传输的事务定义(5)

    之前讨论了consumer和producer是怎么工作的,现在来讨论一下数据传输方面.数据传输的事务定义通常有以下三种级别: 最多一次: 消息不会被重复发送,最多被传输一次,但也有可能一次不传输. 最 ...

  2. spring boot 启动数据库报错(Exception during pool initialization.)

    2018-06-27 14:12:28.804 ERROR 14312 --- [ restartedMain] com.zaxxer.hikari.pool.HikariPool : HikariP ...

  3. 《C++ Primer Plus》第8章 函数探幽 学习笔记

    C++ 扩展了 C 语言的函数功能.通过将 inline 关键字用于函数定义,并在首次调用该函数前提供其函数定义,可以使得 C++ 编译器将该函数视为内联函数.也就是说,编译器不是让程序跳到独立的代码 ...

  4. 【BZOJ4636】蒟蒻的数列 STL

    [BZOJ4636]蒟蒻的数列 Description 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个数列,初始值均为0,他进行N次操作,每次将数列[a,b)这个 ...

  5. ios UITableView中Cell重用机制导致内容重复解决方法

    UITableView继承自UIScrollview,是苹果为我们封装好的一个基于scroll的控件.上面主要是一个个的 UITableViewCell,可以让UITableViewCell响应一些点 ...

  6. 深入理解ByteBuffer

    ByteBuffer类是在Java NIO中常常使用的一个缓冲区类,使用它可以进行高效的IO操作,但是,如果对常用方法的理解有错误,那么就会出现意想不到的bug. ByteBuffer类的常用方法 先 ...

  7. HDFS 常用Shell命令

    HDFS Shell命令 概述 HDFS Shell命令允许使用命令行在HDFS存储中进行文件夹和文件操作. 如文件夹的增删改查.文件的增删改查等. 开始练习hadoop时,打开Linux之后要用 s ...

  8. PAT 甲级 1025 PAT Ranking

    1025. PAT Ranking (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Programmi ...

  9. About LabView

    Recently I am running an experiment. Because the lab has only NI devices, I have to learn to use the ...

  10. getResource()和getResourceAsStream以及路径问题(转)

    用JAVA获取文件,听似简单,但对于很多像我这样的新人来说,还是掌握颇浅,用起来感觉颇深,大常最经常用的,就是用JAVA的File类,如要取得c:/test.txt文件,就会这样用File file ...