POJ 2417 Discrete Logging (Baby-Step Giant-Step)
|
Discrete Logging
Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
B L == N (mod P) Input Read several lines of input, each containing P,B,N separated by a space.
Output For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input 5 2 1 Sample Output 0 Hint The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B (P-1) == 1 (mod P) for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m B (-m) == B (P-1-m) (mod P) . Source |
模板题。
http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4
/* ***********************************************
Author :kuangbin
Created Time :2013/8/24 0:06:54
File Name :F:\2013ACM练习\专题学习\数学\Baby_step_giant_step\POJ2417.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
//baby_step giant_step
// a^x = b (mod n) n为素数,a,b < n
// 求解上式 0<=x < n的解
#define MOD 76543
int hs[MOD],head[MOD],next[MOD],id[MOD],top;
void insert(int x,int y)
{
int k = x%MOD;
hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++;
}
int find(int x)
{
int k = x%MOD;
for(int i = head[k]; i != -; i = next[i])
if(hs[i] == x)
return id[i];
return -;
}
int BSGS(int a,int b,int n)
{
memset(head,-,sizeof(head));
top = ;
if(b == )return ;
int m = sqrt(n*1.0), j;
long long x = , p = ;
for(int i = ; i < m; ++i, p = p*a%n)insert(p*b%n,i);
for(long long i = m; ;i += m)
{
if( (j = find(x = x*p%n)) != - )return i-j;
if(i > n)break;
}
return -;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int a,b,n;
while(scanf("%d%d%d",&n,&a,&b) == )
{
int ans = BSGS(a,b,n);
if(ans == -)printf("no solution\n");
else printf("%d\n",ans);
}
return ;
}
POJ 2417 Discrete Logging (Baby-Step Giant-Step)的更多相关文章
- POJ 2417 Discrete Logging(离散对数-小步大步算法)
Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...
- POJ - 2417 Discrete Logging(Baby-Step Giant-Step)
d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...
- BSGS算法+逆元 POJ 2417 Discrete Logging
POJ 2417 Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4860 Accept ...
- BSGS(Baby Steps,Giant Steps)算法详解
BSGS(Baby Steps,Giant Steps)算法详解 简介: 此算法用于求解 Ax≡B(mod C): 由费马小定理可知: x可以在O(C)的时间内求解: 在x=c之后又会循环: 而BS ...
- POJ 2417 Discrete Logging ( Baby step giant step )
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3696 Accepted: 1727 ...
- POJ 2417 Discrete Logging BSGS
http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...
- POJ 2417 Discrete Logging 离散对数
链接:http://poj.org/problem?id=2417 题意: 思路:求离散对数,Baby Step Giant Step算法基本应用. 下面转载自:AekdyCoin [普通Baby S ...
- poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2831 Accepted: 1391 ...
- poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)
http://poj.org/problem?id=2417 A^x = B(mod C),已知A,B.C.求x. 这里C是素数,能够用普通的baby_step. 在寻找最小的x的过程中,将x设为i* ...
随机推荐
- HDU 6187 Destroy Walls (对偶图最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6187 题意:有一个V个结点M条边的带边权无向平面图,有一个人在一个区域,要拆一些墙使得他可以到达任意一 ...
- Linux shell中运行命令后加上字符“&”的作用(转)
原文链接为:http://blog.sina.com.cn/s/blog_963453200102uya7.html & 放在启动参数后面表示设置此进程为后台进程 默认情况下,进程是前台进程, ...
- 产生随机数 random
int rand(void); 返回 0 ------- RAND_MAX 之间的一个 int 类型整数,该函数为非线程安全函数.并且生成随机数的性能不是很好,已经不推荐使用. void ...
- luogu P1549 棋盘问题(2) 题解
luogu P1549 棋盘问题(2) 题解 题目描述 在\(N * N\)的棋盘上\((1≤N≤10)\),填入\(1,2,-,N^2\)共\(N^2\)个数,使得任意两个相邻的数之和为素数. 例如 ...
- JavaScript(获取或设置html元素的宽,高,坐标),确定和判断鼠标是否在元素内部,二级导航菜单鼠标离开样式问题解决
设置: document.getElementById('id').style.width=value document.getElementById('id').style.height=va ...
- NOIP2011 D1 T2选择客栈
上题目: 题目描述 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一家咖啡店,每 ...
- sublime 字体设置
安装完成sublime之后,推荐一种比较舒服的字体设置,个人习惯.配置步骤如下,打开sublime-->Preferences-->Settings - User 2.复制以下内容粘贴,并 ...
- 竹间智能科技(Emotibot)
竹间智能简仁贤:表情识别准确率达到81.57%,语义理解是主要的商用落地场景 北京-招聘机器学习(实习生) 深圳-招聘图像识别工程师
- 微信小程序开发之路之组件化
类似于页面,自定义组件拥有自己的 wxml 模版和 wxss 样式. 官方链接 组件化,反过来理解,写重复的页面,方法,写第二遍就烦了,抽取出来就是组件化,可以理解为公用的方法 对于通用的数据,最先想 ...
- linux——(8)数据流重定向、管道命令
概念一:数据流重定向 数据流分输入流和输出流,还有一个标准错误流,负责管理出错信息,比如一般的命令的输出会输出到屏幕上,我们可以用重定向让他输入到某个文件内. 相关操作: 1,标准输入(stdin): ...