POJ 2417 Discrete Logging (Baby-Step Giant-Step)
|
Discrete Logging
Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
B L == N (mod P) Input Read several lines of input, each containing P,B,N separated by a space.
Output For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input 5 2 1 Sample Output 0 Hint The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B (P-1) == 1 (mod P) for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m B (-m) == B (P-1-m) (mod P) . Source |
模板题。
http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4
/* ***********************************************
Author :kuangbin
Created Time :2013/8/24 0:06:54
File Name :F:\2013ACM练习\专题学习\数学\Baby_step_giant_step\POJ2417.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
//baby_step giant_step
// a^x = b (mod n) n为素数,a,b < n
// 求解上式 0<=x < n的解
#define MOD 76543
int hs[MOD],head[MOD],next[MOD],id[MOD],top;
void insert(int x,int y)
{
int k = x%MOD;
hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++;
}
int find(int x)
{
int k = x%MOD;
for(int i = head[k]; i != -; i = next[i])
if(hs[i] == x)
return id[i];
return -;
}
int BSGS(int a,int b,int n)
{
memset(head,-,sizeof(head));
top = ;
if(b == )return ;
int m = sqrt(n*1.0), j;
long long x = , p = ;
for(int i = ; i < m; ++i, p = p*a%n)insert(p*b%n,i);
for(long long i = m; ;i += m)
{
if( (j = find(x = x*p%n)) != - )return i-j;
if(i > n)break;
}
return -;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int a,b,n;
while(scanf("%d%d%d",&n,&a,&b) == )
{
int ans = BSGS(a,b,n);
if(ans == -)printf("no solution\n");
else printf("%d\n",ans);
}
return ;
}
POJ 2417 Discrete Logging (Baby-Step Giant-Step)的更多相关文章
- POJ 2417 Discrete Logging(离散对数-小步大步算法)
Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 ...
- POJ - 2417 Discrete Logging(Baby-Step Giant-Step)
d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...
- BSGS算法+逆元 POJ 2417 Discrete Logging
POJ 2417 Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4860 Accept ...
- BSGS(Baby Steps,Giant Steps)算法详解
BSGS(Baby Steps,Giant Steps)算法详解 简介: 此算法用于求解 Ax≡B(mod C): 由费马小定理可知: x可以在O(C)的时间内求解: 在x=c之后又会循环: 而BS ...
- POJ 2417 Discrete Logging ( Baby step giant step )
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3696 Accepted: 1727 ...
- POJ 2417 Discrete Logging BSGS
http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...
- POJ 2417 Discrete Logging 离散对数
链接:http://poj.org/problem?id=2417 题意: 思路:求离散对数,Baby Step Giant Step算法基本应用. 下面转载自:AekdyCoin [普通Baby S ...
- poj 2417 Discrete Logging ---高次同余第一种类型。babystep_gaint_step
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 2831 Accepted: 1391 ...
- poj 2417 Discrete Logging(A^x=B(mod c),普通baby_step)
http://poj.org/problem?id=2417 A^x = B(mod C),已知A,B.C.求x. 这里C是素数,能够用普通的baby_step. 在寻找最小的x的过程中,将x设为i* ...
随机推荐
- 链接 DB App.config 解析
<?xml version="1.0" encoding="utf-8"?><configuration> <startup> ...
- selenium滚动到顶部与底部
#coding=utf-8 from selenium import webdriver #滚动到浏览器顶部 js_top = "var q=document.documentElement ...
- acm专题---dfs+bfs
题目来源:http://hihocoder.com/problemset/problem/1049 #1049 : 后序遍历 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描 ...
- Photon3Unity3D.dll 解析二——EventData
EventData 包含Photon事件的所有内容 Code 用于表示事件,相当于主键ID,LiteEventCode定义了一部分服务端普遍事件事件: Parameters 事 ...
- django 解决csrf跨域问题
1.中间件代码 [root@linux-node01 mysite]# tree middlewares middlewares ├── base.py ├── base.pyc ├── cors.p ...
- interesting Integers(数学暴力||数论扩展欧几里得)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8
- PHP 中文乱码解决方式
1.PHP代码在PHP Storm中乱码,设置PHP Storm的默认文件编码格式为UTF-8: 文件->设置->编辑器->文件编码->将所有默认编码调整为UTF-8: 2.对 ...
- poj1040 Transportation(DFS)
题目链接 http://poj.org/problem?id=1040 题意 城市A,B之间有m+1个火车站,第一站A站的编号为0,最后一站B站的编号为m,火车最多可以乘坐n人.火车票的票价为票上终点 ...
- Webpack, VSCode 和 Babel 组件模块导入别名
很多时候我们使用别人的库,都是通过 npm install,再简单的引入,就可以使用了. 1 2 import React from 'react' import { connect } fr ...
- python 计算md5
import hashlib src = "afnjanflkas" m2 = hashlib.md5() m2.update(src) print m2.hexdigest() ...