一开始想的时候,好像两个并查集就可以做......然后突然懂了什么....

相同的并查集没有问题,不同的就不能并查集了,暴力的来个set就行了.....

合并的时候启发式合并即可做到$O(n \log^2 n)$

如果打$splay$,那么启发式合并可以做到$O(n \log n)$

#include <set>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define pc(o) *O ++ = o
char WR[], *O = WR;
inline void write(int opt) {
if(opt == ) pc('Y'), pc('E'), pc('S'), pc('\n');
else pc('N'), pc('O'), pc('\n');
} #define ri register int
#define sid 200050 set <int> f[sid];
int T[sid], n, tot;
int x[sid], y[sid], p[sid], fa[sid]; inline int find(int o) {
if(fa[o] == o) return o;
return fa[o] = find(fa[o]);
} int main() {
n = read();
for(ri i = ; i <= n; i ++) {
x[i] = read(); y[i] = read(); p[i] = read();
T[++ tot] = x[i]; T[++ tot] = y[i];
}
sort(T + , T + tot + );
tot = unique(T + , T + tot + ) - T - ;
for(ri i = ; i <= n; i ++) {
x[i] = lower_bound(T + , T + tot + , x[i]) - T;
y[i] = lower_bound(T + , T + tot + , y[i]) - T;
}
for(ri i = ; i <= tot; i ++) fa[i] = i;
for(ri i = ; i <= n; i ++) {
int u = find(x[i]), v = find(y[i]);
if(!p[i]) {
if(u == v) write(-);
else write(), f[u].insert(v), f[v].insert(u);
}
else {
if(u == v) write();
else if(f[u].count(v)) write(-);
else {
write();
if(f[u].size() > f[v].size()) swap(u, v); fa[u] = v;
for(set <int> :: iterator it = f[u].begin(); it != f[u].end(); it ++)
{ int w = *it; f[w].insert(v); f[v].insert(w); }
}
}
}
fwrite(WR, , O - WR, stdout);
return ;
}

51nod1515 明辨是非 并查集 + set的更多相关文章

  1. 51nod-1515 明辨是非——并查集

    给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以相等,则输出YES,并限制他们相等:否则输出NO,并忽略此次操作. 当p为0时,如果第x变量和第y个变量可以不相等,则输 ...

  2. 51nod 1515 明辨是非 [并查集+set]

    今天cb巨巨突然拿题来问,感觉惊讶又开心,希望他早日康复!!坚持学acm!加油! 题目链接:51nod 1515 明辨是非 [并查集] 1515 明辨是非 题目来源: 原创 基准时间限制:1 秒 空间 ...

  3. 51 nod 1515 明辨是非(并查集合并)

    1515 明辨是非题目来源: 原创基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以 ...

  4. 51Nod 1515 明辨是非 —— 并查集 + 启发式合并

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1515 1515 明辨是非  题目来源: 原创 基准时间限制:1 ...

  5. 51nod 1515:明辨是非 并查集合并

    1515 明辨是非 题目来源: 原创 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 给n组操作,每组操作形式为x y p. 当p为1时,如果第x ...

  6. 51nod 1515 明辨是非 并查集 + set + 启发式合并

    给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以相等,则输出YES,并限制他们相等:否则输出NO,并忽略此次操作. 当p为0时,如果第x变量和第y个变量可以不相等,则输 ...

  7. 51nod 1515 明辨是非 并查集+set维护相等与不等关系

    考试时先拿vector瞎搞不等信息,又没离散化,结果好像MLE:后来想起课上讲过用set维护,就开始瞎搞迭代器...QWQ我太菜了.. 用并查集维护相等信息,用set记录不相等的信息: 如果要求变量不 ...

  8. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  9. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

随机推荐

  1. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  2. 【BZOJ】2693: jzptab 莫比乌斯反演

    [题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...

  3. 网易android开发面试题及心得

    前几天面试网易android开发,总体感觉问题难度一般.怪我自己没有好好梳理知识,尤其是基础,后面就没消息了... 笔试: 1.描述Activity 生命周期 2.什么是ANR,如何规避? 3.描述a ...

  4. 导航狗IT周报-2018年05月27日

    原文链接:https://www.daohanggou.cn/2018/05/27/it-weekly-9/ 摘要: “灰袍技能圈子”将闭圈:物理安全:为什么我们现在的生活节奏越来越快? 技术干货 1 ...

  5. 64_q1

    QMsgBox-0-9.20130830git94677dc.fc26.i686.rpm 13-Feb-2017 23:40 40674 QMsgBox-0-9.20130830git94677dc. ...

  6. 用ELK搭建简单的日志收集分析系统【转】

    缘起 在微服务开发过程中,一般都会利用多台服务器做分布式部署,如何能够把分散在各个服务器中的日志归集起来做分析处理,是一个微服务服务需要考虑的一个因素. 搭建一个日志系统 搭建一个日志系统需要考虑一下 ...

  7. cmder中文显示相关问题解决方案(1.3以上版本)

    cmder虽然Windows命令行的进阶版,虽然好看易用,但其中文编码一直是个问题.网上有不少博客给出解决方案,大部分都已因为版本更新失效.本文解决方案针对1.3以上版本的cmder用户 中文字体重叠 ...

  8. 大型网站的 HTTPS 实践(二)——HTTPS 对性能的影响(转)

    原文链接:http://op.baidu.com/2015/04/https-s01a02/ 1 前言 HTTPS 在保护用户隐私,防止流量劫持方面发挥着非常关键的作用,但与此同时,HTTPS 也会降 ...

  9. Hadoop(一):概述

    一.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.Hadoop框架最核心的设计包含两个方面,一是分布式文件系统(Hadoop Distributed File ...

  10. 关于JavaScript中实现继承,及prototype属性

    感谢Mozilla 让我弄懂继承. JavaScript有八种基本类型,函数属于object.所以所有函数都继承自object.//扩展:对象,基本上 JavaScript 里的任何东西都是对象,而且 ...