BZOJ2694 Lcm 【莫比乌斯反演】
BZOJ2694 Lcm
Description

Input
一个正整数T表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
4
2 4
3 3
6 5
8 3
Sample Output
24
28
233
178
HINT
T <= 10000
N, M<=4000000

文章链接:https://www.cnblogs.com/dream-maker-yk/p/9676383.html
#include<bits/stdc++.h>
using namespace std;
#define N 4000010
#define LL long long
int T,n,m,tot=0,Mod=1;
int pri[N],mu[N];
LL F[N],C[N];
bool mark[N]={0};
void init(){
for(int i=1;i<=30;i++)Mod*=2;
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<N;j++){
mark[i*pri[j]]=1;
if(i%pri[j]==0)mu[i*pri[j]]=0;
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)
for(int j=1;i*j<N;j++)
if(mu[j])F[i*j]+=mu[i]*i;
for(int i=1;i<N;i++)F[i]=(1ll*F[i]*i+F[i-1]+Mod)%Mod;
for(int i=1;i<N;i++)C[i]=(1ll*(i+1)*i/2)%Mod;
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
LL ans=0;
int up=min(n,m);
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans=(ans+(F[j]-F[i-1])*C[n/i]*C[m/i]%Mod+Mod)%Mod;
}
printf("%lld\n",ans);
}
return 0;
}
BZOJ2694 Lcm 【莫比乌斯反演】的更多相关文章
- Bzoj2694/Bzoj4659:莫比乌斯反演
Bzoj2694/Bzoj4659:莫比乌斯反演 先上题面:首先看到这数据范围显然是反演了,然而第三个限制条件十分不可做.于是我们暂且无视他,大不了补集转化算完再减是吧. 于是我们有:这里我们定义:于 ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...
- BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...
- [bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...
- hdu 5382 GCD?LCM! - 莫比乌斯反演
题目传送门 传送门I 传送门II 题目大意 设$F(n) = \sum_{i = 1}^{n}\sum_{j = 1}^{n}\left [ [i, j] + (i, j) \geqslant n \ ...
- lcm的和(莫比乌斯反演)
马上开学了,加一个操作系统和数据库标签 不玩了,求1-n和1-m的lcm(i,j)和 首先想到把lcm(i,j)转化为i * j / gcd(i, j) 然后gcd,要素察觉,开始枚举d使得gcd(i ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
随机推荐
- spring boot2.1读取 apollo 配置中心1
第一篇:搭建apollo配置中心 为什么选择apollo,我做了一些对比: Diamond Disconf Apollo Spring Cloud Config 数据持久性 mysql mysql ...
- maven spring MVC 及tomcat
eclipse+tomcat8+springMVC环境搭建https://blog.csdn.net/code_fighter/article/details/79169058 Eclipse+Tom ...
- css tips —— 在css中完成国际化
前提 在日常处理国际化的时候,通常是将key通过类似intl.xx(key)转换为对应环境的文案,可是如果需要在css中加入对应逻辑应该怎么做呢(比如在after的伪元素中显示不同的文案),毕竟在cs ...
- 代码演示神器——jsfiddle
目录: 1. 介绍 2. jsfiddle的具体使用 3. 总结 1. 介绍 很多时候,我们需要在我们写的文章或博客中,即时显示出我们写的demo,能方便的解释出我们的思路.很久之前我也写过一篇文章, ...
- Tomcat服务部署步骤
Tomcat服务部署步骤 1. 2. 3. tar -zxvf apache-tomcat-7.0.68.tar.gz,然后修改文件夹名称为需要的名称, 使用mv命令 4. 删除 /webapps/R ...
- hadoop2.6.0集群配置
1.修改机器名 集群的搭建最少需要三个节点,机器名分别修改为master,slave1,slave2.其中以master为主要操作系统. 修改hostname: sudo gedit /etc/hos ...
- javascript中的__proto__ 和prototype
不错的一张图
- 微信小程序------媒体组件(视频,音乐,图片)
今天主要是简单的讲一下小程序当中的媒体组件,媒体组件包括:视频,音乐,图片等. 先来看看效果图: 1:图片Image <!-- scaleToFill:不保持纵横比缩放图片,使图片的宽高完全拉伸 ...
- 页面title加icon
把favicon.ico放入根目录下,在head中添加一下代码 <link rel="icon" type="image/x-icon" href=&qu ...
- torch 深度学习 (2)
torch 深度学习 (2) torch ConvNet 前面我们完成了数据的下载和预处理,接下来就该搭建网络模型了,CNN网络的东西可以参考博主 zouxy09的系列文章Deep Learning ...