题目链接

Problem Description

You are given an array A , and Zhu wants to know there are how many different array B satisfy the following conditions?

1≤Bi≤Ai

For each pair( l , r ) (1≤l≤r≤n) , gcd(bl,bl+1...br)≥2

Input

The first line is an integer T(1≤T≤10) describe the number of test cases.

Each test case begins with an integer number n describe the size of array A.

Then a line contains n numbers describe each element of A

You can assume that 1≤n,Ai≤105

Output

For the kth test case , first output "Case #k: " , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer mod 109+7

Sample Input

1

4

4 4 4 4

Sample Output

Case #1: 17

题意:

给出长度为n的A数列,求满足条件的B数组的个数,条件:①1<=b[i]<=a[i] ②对于任意区间【L,R】,区间gcd>=2

看网上大神的代码都是用莫比乌斯反演来求解的,不大理解这个,就说一下我自己的一个思路吧。

定义:

dp[i]表示gcd为i的数的个数, 则b中每个元素都为i的倍数

a数组保存每一个输进去的值,cnt[i]表示小于等于i的数的个数

设d为当前的gcd

b[i]<=a[i] 则第i个位置有a[i]/d种选择 直接累乘TLE.

若a[i]/d=k贡献为k,则和它相同贡献有cnt[kd,(k+1)d-1]个,则按段来枚举,算出该段贡献k^cnt.

最后容斥减掉gcd为jx的部分(j>1)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=2e5+20;
const ll mod=1e9+7;
ll dp[N],n,a[N],cnt[N];///dp[i]表示gcd为i的数的个数,a数组保存每一个输进去的值,cnt[i]表示小于等于i的数的个数
ll powmod(ll x,ll n)///快速幂求出x^n取模后的结果
{
ll s=1;
while(n)
{
if(n&1)
s=(s*x)%mod;
n>>=1;
x=(x*x)%mod;
}
return s%mod;
} int main()
{
int T;
scanf("%d",&T);
int cas=0;
while(T--)
{
scanf("%d",&n);
memset(cnt,0,sizeof(cnt));
memset(dp,0,sizeof(dp));
ll mx=0;
for(int i=1; i<=n; i++)
{
scanf("%lld",&a[i]);
mx=max(mx,a[i]);///mx表示输进去的这些数的最小值
cnt[a[i]]++;
}
for(int i=1; i<=mx; i++)
cnt[i]+=cnt[i-1];///cnt最终表示的是小于等于i的数的个数
ll ans=0;
for(int i=mx; i>=2; i--)///当前是以i为gcd
{
ll res=1;
if(cnt[i-1])///压根就不存在比i小的数,那么也不可能有以i为gcd的数
{
dp[i]=0;
continue;
}
for(int j=i; j<=mx; j+=i)///j都是i的倍数
{
ll num=cnt[min(mx,(ll)j+i-1)]-cnt[j-1];//[ki~(k+1)i),在这个标准下的输的个数
ll x=j/i;///贡献为x
if(num)
res=(res*powmod(x,num))%mod;///这里的含义可以理解为每个数都有x种选法,现在一共有num个数,则应该是x^num
}
dp[i]=res;
}
for(int i=mx; i>=2; i--)
{
for(int j=i+i; j<=mx; j+=i)
dp[i]=(dp[i]-dp[j]+mod)%mod;
ans=(ans+dp[i])%mod;
}
printf("Case #%d: %lld\n",++cas,ans);
}
return 0;
}

2017ACM暑期多校联合训练 - Team 2 1009 HDU 60563 TrickGCD (容斥公式)的更多相关文章

  1. 2017ACM暑期多校联合训练 - Team 7 1009 HDU 6128 Inverse of sum (数学计算)

    题目链接 Problem Description There are n nonnegative integers a1-n which are less than p. HazelFan wants ...

  2. 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)

    题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...

  3. 2017ACM暑期多校联合训练 - Team 9 1005 HDU 6165 FFF at Valentine (dfs)

    题目链接 Problem Description At Valentine's eve, Shylock and Lucar were enjoying their time as any other ...

  4. 2017ACM暑期多校联合训练 - Team 9 1010 HDU 6170 Two strings (dp)

    题目链接 Problem Description Giving two strings and you should judge if they are matched. The first stri ...

  5. 2017ACM暑期多校联合训练 - Team 8 1006 HDU 6138 Fleet of the Eternal Throne (字符串处理 AC自动机)

    题目链接 Problem Description The Eternal Fleet was built many centuries ago before the time of Valkorion ...

  6. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  7. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

  8. 2017ACM暑期多校联合训练 - Team 8 1008 HDU 6140 Hybrid Crystals (模拟)

    题目链接 Problem Description Kyber crystals, also called the living crystal or simply the kyber, and kno ...

  9. 2017ACM暑期多校联合训练 - Team 7 1002 HDU 6121 Build a tree (深搜+思维)

    题目链接 Problem Description HazelFan wants to build a rooted tree. The tree has n nodes labeled 0 to n− ...

随机推荐

  1. java结合testng,利用XML做数据源的数据驱动示例

    testng的功能很强大,利用@DataProvider可以做数据驱动,数据源文件可以是EXCEL,XML,YAML,甚至可以是TXT文本.在这以XML为例: 备注:@DataProvider的返回值 ...

  2. centOS7设置静态ip后无法上网的解决,【亲可测】

    最近在VMware虚拟机里玩Centos,装好后发现上不了网.经过一番艰辛的折腾,终于找到出解决问题的方法了.最终的效果是无论是ping内网IP还是ping外网ip,都能正常ping通.方法四步走: ...

  3. BurpSuite 激活破解

    1.下载软件关于Burp Suite, 它是进行Web应用安全测试的一个集成平台,无缝融合各种安全工具并提供全面的接口适配,支持完整的Web应用测试流程,从最初的映射和应用程序的攻击面分析到发现和利用 ...

  4. c语言----程序记录

    1.结构体写入文件,读取 #include <stdio.h> #include <string.h> #include <stdlib.h> #define ma ...

  5. Halcon 笔记3 形态学

    Halcon 三大数据类型: (1)图像 (2)区域 (3)XLD  查看时间工具 如果想让图像减少,则进行腐蚀(或者使用开运算),反之,则进行膨胀(或闭运算) 腐蚀后再进行膨胀,相当于进行开运算.因 ...

  6. 编写shell时,遇到let: not found错误及解决办法

    #!/bin/bashi=1sum=0while [ $i -le 100 ]do  let sum=sum+$i  let i++ done 在写一个简单的循环脚本时,报错 let: not fou ...

  7. PHP中普通属性和静态属性

    普通属性(实例属性): 实例的单词为:instance 实例,其实也叫做“对象”: 普通(实例)属性,就是一个可以在该类实例化出的对象上使用的属性! 定义形式: class  类名{ var  $属性 ...

  8. 编码转换,基础,copy

    阅读目录 编码转换 基础补充 深浅拷贝 文件操作 一,编码转换 1. ASCII : 最早的编码. ⾥⾯有英⽂⼤写字⺟, ⼩写字⺟, 数字, ⼀些特殊字符. 没有中⽂, 8个01代码, 8个bit, ...

  9. 【转】.gitignore失效的解决办法

    转自:http://foreverdo.diandian.com/post/2012-09-20/40038034798 How to make .gitignore works? Just got ...

  10. 【BZOJ3667】Rabin-Miller算法(Pollard_rho)

    [BZOJ3667]Rabin-Miller算法(Pollard_rho) 题面 呜,权限题,别问我是怎么做的(我肯定没有权限号啊) 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一 ...