洛谷P2633/bzoj2588 Count on a tree (主席树)
洛谷P2633/bzoj2588 Count on a tree
题目描述
给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权。其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文。
输入输出格式
输入格式:
第一行两个整数N,M。
第二行有N个整数,其中第i个整数表示点i的权值。
后面N-1行每行两个整数(x,y),表示点x到点y有一条边。
最后M行每行两个整数(u,v,k),表示一组询问。
输出格式:
M行,表示每个询问的答案。
输入输出样例
输入样例#1:
8 5
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5 1
0 5 2
10 5 3
11 5 4
110 8 2
输出样例#1:
2
8
9
105
7
说明
HINT:
N,M<=100000
暴力自重。。。
来源:bzoj2588 Spoj10628.
Solution
bzoj题面传送门
无修改,树上路径查询k小值
k小值可以主席树解决,树上路径其实不用真的提出来,我们可以运用差分的思路,由于是点差,求出它的\(lca,\)那么\(ans=a[u]+a[v]-a[lca]-a[fa[lca]]\).
具体到这道题就是\(u\)的主席树\(+v\)的主席树\(-lca\)的主席树\(-fa[lca]\)的主席树
\(lca\)倍增求就可以了
Code
#include<bits/stdc++.h>
#define in(i) (i=read())
#define il extern inline
#define rg register
#define mid ((l+r)>>1)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define lol long long
using namespace std;
const int N=1e5+10;
int read() {
int ans=0, f=1; char i=getchar();
while (i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while (i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+(i^48), i=getchar();
return ans*f;
}
int n,m,cur,num,tot,pre;
int head[N],nex[N<<1],to[N<<1];
int f[25][N],lg[N]={-1},dep[N];
int a[N],h[N],rt[N<<6];
struct Chair_Tree {
int l,r,v;
}t[N<<6];
void add(int a,int b) {
to[++cur]=b,nex[cur]=head[a],head[a]=cur;
to[++cur]=a,nex[cur]=head[b],head[b]=cur;
}
void insert(int &u,int l,int r,int pre,int p) {
t[u=++tot]=t[pre], t[u].v++;
if(l==r) return;
if(p<=mid) insert(t[u].l,l,mid,t[pre].l,p);
else insert(t[u].r,mid+1,r,t[pre].r,p);
}
int query(int a,int b,int c,int d,int l,int r,int k) {
int AQ=t[t[a].l].v+t[t[b].l].v-t[t[c].l].v-t[t[d].l].v;
if(l==r) return h[l];
if(k<=AQ) return query(t[a].l,t[b].l,t[c].l,t[d].l,l,mid,k);
else return query(t[a].r,t[b].r,t[c].r,t[d].r,mid+1,r,k-AQ);
}
void dfs(int u) {
a[u]=lower_bound(h+1,h+1+num,a[u])-h;
insert(rt[u],1,num,rt[f[0][u]],a[u]);
for (int i=head[u];i;i=nex[i]) {
if(to[i]==f[0][u]) continue;
dep[to[i]]=dep[u]+1, f[0][to[i]]=u;
dfs(to[i]);
}
}
void init() {
for (int i=1;i<=n;i++) lg[i]=lg[i>>1]+1;
for (int i=1;i<=lg[n];i++)
for (int j=1;j<=n;j++)
f[i][j]=f[i-1][f[i-1][j]];
}
int LCA(int a,int b) {
if(dep[a]>dep[b]) swap(a,b);
int s=dep[b]-dep[a];
for (int i=lg[s];i>=0;i--)
if(s>>i&1) b=f[i][b];
if(a==b) return a;
for (int i=lg[n];i>=0;i--) {
if(f[i][a]==f[i][b]) continue;
a=f[i][a], b=f[i][b];
}return f[0][a];
}
int main()
{
in(n), in(m);
for (int i=1;i<=n;i++) in(a[i]),h[i]=a[i];
sort(h+1,h+1+n); num=unique(h+1,h+1+n)-h-1;
for (int i=1,x,y;i<n;i++) in(x),in(y),add(x,y);
dep[1]=1, dfs(1), init();
for (int i=1,a,b,k;i<=m;i++) {
in(a),in(b),in(k),a^=pre;
int lca=LCA(a,b);
printf("%d\n",pre=query(rt[a],rt[b],rt[lca],rt[f[0][lca]],1,num,k));
}
}
洛谷P2633/bzoj2588 Count on a tree (主席树)的更多相关文章
- 【洛谷 P2633】 Count on a tree(主席树,树上差分)
题目链接 思维难度0 实现难度7 建出主席树后用两点的状态减去lca和lca父亲的状态,然后在新树上跑第\(k\)小 #include <cstdio> #include <cstr ...
- [bzoj2588][count on a tree] (主席树+lca)
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- BZOJ2588:Count on a tree(主席树)
Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...
- 洛谷P2633 Count on a tree(主席树上树)
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
- 洛谷 P2633 Count on a tree 主席树
在一棵树上,我们要求点 $(u,v)$ 之间路径的第$k$大数. 对于点 $i$ ,建立 $i$ 到根节点的一棵前缀主席树. 简单容斥后不难得出结果为$sumv[u]+sumv[v]−sumv[l ...
- 【洛谷2633】Count on a tree(树上主席树)
点此看题面 大致题意: 给你一棵树,每次问你两点之间第\(k\)小的点权,强制在线. 主席树 这种题目强制在线一般就是数据结构了. 而看到区间第\(k\)小,很容易就能想到主席树. 至少不会有人想到树 ...
- 【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA
[BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lasta ...
- 【BZOJ-2588】Count on a tree 主席树 + 倍增
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 3749 Solved: 873[ ...
- P2633 Count on a tree(主席树)
题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...
随机推荐
- Tree Traversals Again(根据前序,中序,确定后序顺序)
题目的大意是:进行一系列的操作push,pop.来确定后序遍历的顺序 An inorder binary tree traversal can be implemented in a non-recu ...
- 2.5星|《哈佛商学院管理与MBA案例全书》:书名太唬人了,依据中文经管书汇编整理而成
哈佛商学院管理与MBA案例全书(套装十册) 看到最后,列出的参考书目中全部是中文经管书,才明白这本书不是哈佛商学院出版的,是国内的编辑做的汇编.参考书目中除了中文经管书之外,还有一套<哈佛商学院 ...
- Adobe InDesign CS6自学入门到高级视频教程
关键字:Adobe InDesign 视频教程 点击获取视频教程 教程目录 第1章/1.卸载InDesign CS6.avi 第1章/2.安装InDesign CS6.avi 第2章/1.创建并编辑自 ...
- 剑指Offer66题的总结、目录
原文链接 剑指Offer每日6题系列终于在今天全部完成了,从2017年12月27日到2018年2月27日,历时两个月的写作,其中绝大部分的时间不是花在做题上,而是花在写作上,这个系列不适合大神,大牛, ...
- java 数据存储
简单的记录一下而已. 1.寄存器: 特点:快,存储有限. 存储地点:处理器内部. 2.堆栈 特点:仅次于寄存器快,通过堆栈指针在处理器获取支持.堆栈指针下移,分配内存,上移,释放内存.此外须知生命周期 ...
- “Hello World!”团队第五周第一次会议
今天是我们团队“Hello World!”团队第五周召开的第一次会议,欢迎我们的新小伙伴刘耀泽同学.博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.Todo List 六.会议 ...
- 《linux内核与分析》第三周
20135130王川东 实验:构造一个简单的Linux系统的MenuOS 命令:qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd root ...
- 强化学习之QLearning
注:以下第一段代码是 文章 提供的代码,但是简书的代码粘贴下来不换行,所以我在这里贴了一遍.其原理在原文中也说得很明白了. 算个旅行商问题 基本介绍 戳 代码解释与来源 代码整个计算过程使用的以下公式 ...
- IT小小鸟读后感言
有感 读了我是一只IT小小鸟之后, 我发现上大学得靠自己自学,确定自己的目标和方向,多去参与实验和自己多锻炼编写程序.我现在大一,还有很多时间来让自己变得更好,虽然要补考两门课程,但是还是不要失去信心 ...
- Android 8悬浮窗适配
背景 APP推出时,提示是退出还是更改账号,这个提示框是系统级别的.然而我的Android 9 会崩溃,宁外一个小伙伴Android 7运行理想.报错提示permission denied for w ...