同事最近做个金融适配项目,找我看条SQL,告知ORACLE跑1分钟,PG要跑30分钟(其实并没有这么夸张), 废话不说,贴慢SQL。

慢SQL(关键信息已经加密)

explain analyze
SELECT
c_qxxxxaode,
'2023-03-22 00:00:00' AS d_cdate,
SUM(CASE WHEN l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -60) THEN 1 ELSE 0 END) AS bt5ycusts,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -60) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36) THEN 1 ELSE 0 END) AS bt3to5ycusts,
SUM(CASE WHEN l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36) THEN 1 ELSE 0 END) AS bt3ycusts,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -36) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -12) THEN 1 ELSE 0 END) AS bt1yto3ycusts,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -12) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -6) THEN 1 ELSE 0 END) AS bt6to12mcusts,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -6) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -3) THEN 1 ELSE 0 END) AS bt3to6mcusts,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -3) THEN 1 ELSE 0 END) AS btlose3mcusts,
SUM(CASE WHEN l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -60) THEN f_qwwvddvvzz ELSE 0 END) AS bt5yshares,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -60) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36) THEN f_qwwvddvvzz ELSE 0 END) AS bt3to5yshares,
SUM(CASE WHEN l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36) THEN f_qwwvddvvzz ELSE 0 END) AS bt3yshares,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -36) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -12) THEN f_qwwvddvvzz ELSE 0 END) AS bt1to3yshares,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -12) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -6) THEN f_qwwvddvvzz ELSE 0 END) AS bt6to12mshares,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -6) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -3) THEN f_qwwvddvvzz ELSE 0 END) AS bt3to6mshares,
SUM(CASE WHEN l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -3) THEN f_qwwvddvvzz ELSE 0 END) AS btlose3mshares,
round(AVG(months_between('2023-03-22 00:00:00', l.f_qdqdqdq)), 2) AS avgmonth,
round(AVG(nvl(f_qwwvddvvzz, 0)), 2) AS avgshares,
COUNT(a_daccoxxz) AS custsum,
SUM(f_qwwvddvvzz) AS sharessum
FROM
stcdlbxxxxx l
WHERE
nvl(l.f_qwwvddvvzz, 0) > 0 AND
l.f_qdqdqdq <= '2023-03-22 00:00:00' AND
l.a_daccoxxz <> '996000000000' AND
c_qxxxxaode IN (SELECT c_qxxxxaode FROM tfundinfo WHERE c_raisetype = '1')
GROUP BY
c_qxxxxaode;

执行计划:

HashAggregate  (cost=1043326.49..1043332.91 rows=151 width=424) (actual time=381246.429..381246.640 rows=150 loops=1)
Group Key: l.c_qxxxxaode
-> Hash Semi Join (cost=8.78..936347.95 rows=301348 width=38) (actual time=0.057..30237.230 rows=30056793 loops=1)
Hash Cond: (l.c_qxxxxaode = tfundinfo.c_qxxxxaode)
-> Seq Scan on stcdlbxxxxx l (cost=0.00..906618.70 rows=10044941 width=38) (actual time=0.008..25908.814 rows=30157190 loops=1)
" Filter: ((NVL(f_qwwvddvvzz, '0'::numeric) > '0'::numeric) AND (f_qdqdqdq <= '2023-03-22 00:00:00'::timestamp without time zone) AND (a_daccoxxz <> '996000000000'::text))"
Rows Removed by Filter: 4842810
-> Hash (cost=6.91..6.91 rows=150 width=8) (actual time=0.046..0.047 rows=150 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 14kB
-> Index Only Scan using idx_tfundinfo_fundcode on tfundinfo (cost=0.28..6.91 rows=150 width=8) (actual time=0.021..0.037 rows=150 loops=1)
Index Cond: (c_raisetype = '1'::text)
Heap Fetches: 0
Planning Time: 0.512 ms
Execution Time: 381246.699 ms
select count(1) from stcdlbxxxxx;
count
----------
35000000
(1 row)

stcdlbxxxxx 表数据量 3500W,数据量不算大,这条SQL主要含义应该是对 fact 表做统计,一堆聚合函数,fact 表是数仓概念,如果不明白可以去百度。

这条SQL主要慢在HashAggregate这个节点上,Hash Semi Join 花了 30237.230毫秒(30秒),然后到上面 Group Key: l.c_qxxxxaode 分个组以后,HashAggregate 直接飙到 381246.640毫秒(6.3分钟)。

其实这条SQL最理想的状态是走 HashAggregate  + parallel 的计划,但是优化器并没有这样做,我怀疑可能是SQL写法导致优化器没有走并行,没多想,直接改写了一版的SQL让同事去试试。

改写版本SQL:(PG独占的语法,聚合函数新增 FILTER 属性,代替 case when 写法)

explain analyze
SELECT c_qxxxxaode,
'2023-03-22 00:00:00' AS d_cdate,
COUNT(*) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -60)) AS bt5ycusts,
COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -60) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3to5ycusts,
COUNT(*) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3ycusts,
COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -36) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -12)) AS bt1yto3ycusts,
COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -12) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -6)) AS bt6to12mcusts,
COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -6) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -3)) AS bt3to6mcusts,
COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -3)) AS btlose3mcusts,
SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -60)) AS bt5yshares,
SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -60) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3to5yshares,
SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3yshares,
SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -36) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -12)) AS bt1to3yshares,
SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -12) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -6)) AS bt6to12mshares,
SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -6) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -3)) AS bt3to6mshares,
SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -3)) AS btlose3mshares,
ROUND(AVG(months_between('2023-03-22 00:00:00', l.f_qdqdqdq)), 2) AS avgmonth,
ROUND(AVG(NVL(f_qwwvddvvzz, 0)), 2) AS avgshares,
COUNT(a_daccoxxz) AS custsum,
SUM(f_qwwvddvvzz) AS sharessum
FROM stcdlbxxxxx l
WHERE NVL(l.f_qwwvddvvzz, 0) > 0
AND l.f_qdqdqdq <= '2023-03-22 00:00:00'
AND l.a_daccoxxz <> '996000000000'
AND c_qxxxxaode IN (SELECT c_qxxxxaode FROM tfundinfo WHERE c_raisetype = '1')
GROUP BY c_qxxxxaode;

改写后执行计划:

HashAggregate  (cost=1043326.49..1043332.91 rows=151 width=424) (actual time=380246.621..380246.849 rows=150 loops=1)
Group Key: l.c_qxxxxaode
-> Hash Semi Join (cost=8.78..936347.95 rows=301348 width=38) (actual time=0.055..29983.463 rows=30056793 loops=1)
Hash Cond: (l.c_qxxxxaode = tfundinfo.c_qxxxxaode)
-> Seq Scan on stcdlbxxxxx l (cost=0.00..906618.70 rows=10044941 width=38) (actual time=0.008..25415.490 rows=30157190 loops=1)
" Filter: ((NVL(f_qwwvddvvzz, '0'::numeric) > '0'::numeric) AND (f_qdqdqdq <= '2023-03-22 00:00:00'::timestamp without time zone) AND (a_daccoxxz <> '996000000000'::text))"
Rows Removed by Filter: 4842810
-> Hash (cost=6.91..6.91 rows=150 width=8) (actual time=0.043..0.044 rows=150 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 14kB
-> Index Only Scan using idx_tfundinfo_fundcode on tfundinfo (cost=0.28..6.91 rows=150 width=8) (actual time=0.018..0.035 rows=150 loops=1)
Index Cond: (c_raisetype = '1'::text)
Heap Fetches: 0
Planning Time: 0.533 ms
Execution Time: 380246.909 ms

当时我看到这个改写后执行计划就无语了,和原SQL的计划一毛一样,直接把我整懵逼,怀疑是否现场环境没开并行参数,但是被同事告知是已经设置了并行参数。

qtbg=> show max_parallel_workers_per_gather
qtbg-> ;
max_parallel_workers_per_gather
---------------------------------
16
(1 row)

了解到情况以后开始研究SQL,发现使用了两个自定义函数,add_months,months_between(我们研发写的函数、为了兼容ORACLE),然后看了下这两个函数的信息。

qtbg=> \df+ add_months
List of functions
Schema | Name | Result data type | Argument data types | Type | Volatility | Parallel | Owner | Security | Access privileges | Language | Source code | Description
--------+------------+------------------+-----------------------------------+------+------------+----------+--------+----------+-------------------+----------+----------------------------------------------------------------------------------+-------------
sys | add_months | pg_catalog.date | pg_catalog.date, boolean | func | immutable | safe | system | invoker | | c | add_months_bool |
sys | add_months | pg_catalog.date | pg_catalog.date, integer | func | immutable | safe | system | invoker | | c | add_months |
sys | add_months | date | timestamp with time zone, integer | func | immutable | safe | system | invoker | | sql | select (add_months($1::pg_catalog.date, $2) + $1::pg_catalog.time)::sys.date; |
(3 rows) qtbg=> \df+ months_between
List of functions
Schema | Name | Result data type | Argument data types | Type | Volatility | Parallel | Owner | Security | Access privileges | Language | Source code | Descri
ption
--------+----------------+------------------+----------------------------------------------------+------+------------+----------+--------+----------+-------------------+----------+-------------------------------------------------------------------------------------------------------------------------------------+-------
------
sys | months_between | double precision | date, date | func | volatile | unsafe | system | invoker | | plsql | +|
| | | | | | | | | | | begin +|
| | | | | | | | | | | case when +|
| | | | | | | | | | | (last_day($1) = $1 and last_day($2) = $2) +|
| | | | | | | | | | | or +|
| | | | | | | | | | | (extract(day from $1) = extract(day from $2)) +|
| | | | | | | | | | | then +|
| | | | | | | | | | | return (select (extract(years from $1)::int * 12 - extract(years from $2)::int * 12)::float + +|
| | | | | | | | | | | (extract(month from $1)::int - extract(month from $2)::int)::float); +|
| | | | | | | | | | | else +|
| | | | | | | | | | | return (select (extract(years from $1)::int * 12 - extract(years from $2)::int * 12)::float + +|
| | | | | | | | | | | (extract(month from $1)::int - extract(month from $2)::int)::float + +|
| | | | | | | | | | | (extract(day from $1)::int - extract(day from $2)::int)/31::float + +|
| | | | | | | | | | | (extract(hour from $1)::int * 3600 + extract(minutes from $1)::int * 60 + extract(seconds from $1)::int)/(3600*24*31)::float -+|
| | | | | | | | | | | (extract(hour from $2)::int * 3600 + extract(minutes from $2)::int * 60 + extract(seconds from $2)::int)/(3600*24*31)::float);+|
| | | | | | | | | | | end case; +|
| | | | | | | | | | | end; +|
| | | | | | | | | | | |
sys | months_between | double precision | timestamp with time zone, timestamp with time zone | func | volatile | unsafe | system | invoker | | plsql | +|
| | | | | | | | | | | begin +|
| | | | | | | | | | | case when +|
| | | | | | | | | | | (last_day($1) = $1 and last_day($2) = $2) +|
| | | | | | | | | | | or +|
| | | | | | | | | | | (extract(day from $1) = extract(day from $2)) +|
| | | | | | | | | | | then +|
| | | | | | | | | | | return (select (extract(years from $1)::int * 12 - extract(years from $2)::int * 12)::float + +|
| | | | | | | | | | | (extract(month from $1)::int - extract(month from $2)::int)::float); +|
| | | | | | | | | | | else +|
| | | | | | | | | | | return (select (extract(years from $1)::int * 12 - extract(years from $2)::int * 12)::float + +|
| | | | | | | | | | | (extract(month from $1)::int - extract(month from $2)::int)::float + +|
| | | | | | | | | | | (extract(day from $1)::int - extract(day from $2)::int)/31::float + +|
| | | | | | | | | | | (extract(hour from $1)::int * 3600 + extract(minutes from $1)::int * 60 + extract(seconds from $1)::int)/(3600*24*31)::float -+|
| | | | | | | | | | | (extract(hour from $2)::int * 3600 + extract(minutes from $2)::int * 60 + extract(seconds from $2)::int)/(3600*24*31)::float);+|
| | | | | | | | | | | end case; +|
| | | | | | | | | | | end; +|
| | | | | | | | | | | |
(2 rows)

当时就给我整崩溃了,研发真的太坑啦。

months_between 函数居然还是 volatile(不稳定)状态,我一直以为研发写好的ORACLE 兼容函数都是 immutable 或者 是 stable 状态,所以刚开始也没往这方面想。

PG的自定义函数有三种状态,volatile、immutable 、stable 。

volatile 是不可以走并行的,这三种状态具体代表的是什么含义,如果不清楚的同学可以下去百度,这里就不废话了,我也怕解释不清楚。

和客户沟通以后,我写了一个 months_between1 函数代替原来的 months_between函数,返回结果小数点的精度可能和ORACLE有点区别,但是客户表示可以接受。

months_between1 函数:

CREATE OR REPLACE FUNCTION months_between1(date1 DATE, date2 DATE)
RETURNS FLOAT AS $$
DECLARE
years_diff INT;
months_diff INT;
days_diff FLOAT;
BEGIN
years_diff := EXTRACT(YEAR FROM date1) - EXTRACT(YEAR FROM date2);
months_diff := EXTRACT(MONTH FROM date1) - EXTRACT(MONTH FROM date2);
days_diff := EXTRACT(DAY FROM date1) - EXTRACT(DAY FROM date2);
days_diff := days_diff / 30.0;
RETURN (years_diff * 12) + months_diff + days_diff;
END;
$$ LANGUAGE plpgsql IMMUTABLE;

将 months_between1 设置可以并行:

ALTER FUNCTION scott.months_between1(date, date) PARALLEL SAFE;

months_between1 函数信息:

\df+ months_between1
List of functions
Schema | Name | Result data type | Argument data types | Type | Volatility | Parallel | Owner | Security | Access privileges | Language | Source code | Description
--------+-----------------+------------------+------------------------+------+------------+----------+-------+----------+-------------------+----------+---------------------------------------------------------------------------+-------------
scott | months_between1 | double precision | date1 date, date2 date | func | immutable | safe | qtbg | invoker | | plpgsql | +|
| | | | | | | | | | | DECLARE +|
| | | | | | | | | | | years_diff INT; +|
| | | | | | | | | | | months_diff INT; +|
| | | | | | | | | | | days_diff FLOAT; +|
| | | | | | | | | | | BEGIN +|
| | | | | | | | | | | years_diff := EXTRACT(YEAR FROM date1) - EXTRACT(YEAR FROM date2); +|
| | | | | | | | | | | months_diff := EXTRACT(MONTH FROM date1) - EXTRACT(MONTH FROM date2);+|
| | | | | | | | | | | days_diff := EXTRACT(DAY FROM date1) - EXTRACT(DAY FROM date2); +|
| | | | | | | | | | | days_diff := days_diff / 30.0; +|
| | | | | | | | | | | RETURN (years_diff * 12) + months_diff + days_diff; +|
| | | | | | | | | | | END; +|
| | | | | | | | | | | |
(1 row)

最后执行SQL测试效率:

 1 explain analyze
2 SELECT c_qxxxxaode,
3 '2023-03-22 00:00:00' AS d_cdate,
4 COUNT(*) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -60)) AS bt5ycusts,
5 COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -60) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3to5ycusts,
6 COUNT(*) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3ycusts,
7 COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -36) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -12)) AS bt1yto3ycusts,
8 COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -12) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -6)) AS bt6to12mcusts,
9 COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -6) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -3)) AS bt3to6mcusts,
10 COUNT(*) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -3)) AS btlose3mcusts,
11 SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -60)) AS bt5yshares,
12 SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -60) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3to5yshares,
13 SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -36)) AS bt3yshares,
14 SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -36) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -12)) AS bt1to3yshares,
15 SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -12) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -6)) AS bt6to12mshares,
16 SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -6) AND l.f_qdqdqdq <= add_months('2023-03-22 00:00:00', -3)) AS bt3to6mshares,
17 SUM(f_qwwvddvvzz) FILTER (WHERE l.f_qdqdqdq > add_months('2023-03-22 00:00:00', -3)) AS btlose3mshares,
18 ROUND(AVG(months_between1('2023-03-22 00:00:00', l.f_qdqdqdq)), 2) AS avgmonth,
19 ROUND(AVG(NVL(f_qwwvddvvzz, 0)), 2) AS avgshares,
20 COUNT(a_daccoxxz) AS custsum,
21 SUM(f_qwwvddvvzz) AS sharessum
22 FROM stcdlbxxxxx l
23 WHERE NVL(l.f_qwwvddvvzz, 0) > 0
24 AND l.f_qdqdqdq <= '2023-03-22 00:00:00'
25 AND l.a_daccoxxz <> '996000000000'
26 AND c_qxxxxaode IN (SELECT c_qxxxxaode FROM tfundinfo WHERE c_raisetype = '1')
27 GROUP BY c_qxxxxaode;

执行计划:

Finalize GroupAggregate  (cost=406085.34..424225.64 rows=151 width=424) (actual time=9533.754..16818.165 rows=150 loops=1)
Group Key: l.c_qxxxxaode
-> Gather Merge (cost=406085.34..424155.80 rows=906 width=392) (actual time=9484.778..16812.958 rows=1050 loops=1)
Workers Planned: 6
Workers Launched: 6
-> Partial GroupAggregate (cost=405085.25..423045.59 rows=151 width=392) (actual time=9383.774..16482.619 rows=150 loops=7)
Group Key: l.c_qxxxxaode
-> Sort (cost=405085.25..405210.81 rows=50225 width=38) (actual time=9358.407..10328.135 rows=4293828 loops=7)
Sort Key: l.c_qxxxxaode
Sort Method: quicksort Memory: 461463kB
Worker 0: Sort Method: quicksort Memory: 452754kB
Worker 1: Sort Method: quicksort Memory: 452822kB
Worker 2: Sort Method: quicksort Memory: 451891kB
Worker 3: Sort Method: quicksort Memory: 448327kB
Worker 4: Sort Method: quicksort Memory: 454387kB
Worker 5: Sort Method: quicksort Memory: 453623kB
-> Hash Semi Join (cost=8.78..401163.65 rows=50225 width=38) (actual time=0.219..4369.485 rows=4293828 loops=7)
Hash Cond: (l.c_qxxxxaode = tfundinfo.c_qxxxxaode)
-> Parallel Seq Scan on stcdlbxxxxx l (cost=0.00..396201.45 rows=1674157 width=38) (actual time=0.017..3948.943 rows=4308170 loops=7)
" Filter: ((NVL(f_qwwvddvvzz, '0'::numeric) > '0'::numeric) AND (f_qdqdqdq <= '2023-03-22 00:00:00'::timestamp without time zone) AND (a_daccoxxz <> '996000000000'::text))"
Rows Removed by Filter: 691830
-> Hash (cost=6.91..6.91 rows=150 width=8) (actual time=0.164..0.173 rows=150 loops=7)
Buckets: 1024 Batches: 1 Memory Usage: 14kB
-> Index Only Scan using idx_tfundinfo_fundcode on tfundinfo (cost=0.28..6.91 rows=150 width=8) (actual time=0.072..0.151 rows=150 loops=7)
Index Cond: (c_raisetype = '1'::text)
Heap Fetches: 0
Planning Time: 0.588 ms
Execution Time: 16851.196 ms

最后可以看到原来 6分钟的SQL,现在已经 16.8秒就能跑出结果,研发真的太坑了。

其实这条SQL完全不用改成 (聚合函数新增 FILTER 属性)这种写法,原来的SQL只要把 months_between 函数替换成 months_between1,一样也可以走并行。

但是为了更好看,还是把这种新的写法提交给了客户。

记录一次 postgresql 优化案例( volatility 自定义函数无法并行查询 )的更多相关文章

  1. 【Redis技术专区】「优化案例」谈谈使用Redis慢查询日志以及Redis慢查询分析指南

    前提介绍 本篇文章主要介绍了Redis的执行的慢查询的功能的查询和配置功能,从而可以方便我们在实际工作中,进行分析Redis的性能运行状况以及对应的优化Redis性能的佐证和指标因素. 在我们5.0左 ...

  2. MYSQL数据库重点:自定义函数、存储过程、触发器、事件、视图

    一.自定义函数 mysql自定义函数就是实现程序员需要sql逻辑处理,参数是IN参数,含有RETURNS字句用来指定函数的返回类型,而且函数体必须包含一个RETURN value语句. 语法: 创建: ...

  3. PostgreSQL常用操作合辑:时间日期、系统函数、正则表达式、库表导入导出、元数据查询、自定义函数、常用案例

    〇.参考地址 1.pg官方文档 http://www.postgres.cn/docs/9.6/index.html 2.腾讯云仓pg文档 https://cloud.tencent.com/docu ...

  4. 数据库优化案例——————某市中心医院HIS系统

    记得在自己学习数据库知识的时候特别喜欢看案例,因为优化的手段是容易掌握的,但是整体的优化思想是很难学会的.这也是为什么自己特别喜欢看案例,今天也开始分享自己做的优化案例. 最近一直很忙,博客产出也少的 ...

  5. mysql优化案例

    MySQL优化案例 Mysql5.1大表分区效率测试 Mysql5.1大表分区效率测试MySQL | add at 2009-03-27 12:29:31 by PConline | view:60, ...

  6. Hive优化案例

    1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...

  7. 数据库优化案例——————某知名零售企业ERP系统

    写在前面 记得在自己学习数据库知识的时候特别喜欢看案例,因为优化的手段是容易掌握的,但是整体的优化思想是很难学会的.这也是为什么自己特别喜欢看案例,今天也分享自己做的优化案例. 之前分享过OA系统.H ...

  8. ORACLE当中自定义函数性优化浅析

    为什么函数影响性能 在SQL语句中,如果不合理的使用函数(Function)就会严重影响性能,其实这里想说的是PL/SQL中的自定义函数,反而对于一些内置函数而言,影响性能的可能性较小.那么为什么SQ ...

  9. Spark集群之yarn提交作业优化案例

    Spark集群之yarn提交作业优化案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.启动Hadoop集群 1>.自定义批量管理脚本 [yinzhengjie@s101 ...

  10. MySQL参数优化案例

    环境介绍 优化层级与指导思想 优化过程 最小化安装情况下的性能表现 优化innodb_buffer_pool_size 优化innodb_log_files_in_group&innodb_l ...

随机推荐

  1. Ubuntu20.04 下编译和运行 FreeSWITCH的问题汇总

    1. Ubuntu20.04 下编译和运行 FreeSWITCH的问题汇总 1.1. 环境 Ubuntu20.04.2 LTS (Linux 5.4.0-152-generic x86_64 GNU/ ...

  2. pyqt5学习日记

    前提需要pip安装PyQt5与PyQt5-tools 安装后会有qtdesigner.exe和pyuic5.exe,用everything直接可以搜索到 qtdesigner.exe是来设计ui的 p ...

  3. vue3 组合式 api 单文件组件写法

    1 Vue3 组合式 API 的基本原理和理念 1.1 Vue3 中的 Composition API Vue3 中的 Composition API 是一种新的编写组件逻辑的方式,它提供了更好的代码 ...

  4. Esxi 8 更换Nvme硬盘后 如何迁移Esxi主机和虚拟机到新硬盘

    Esxi 8 更换Nvme硬盘后 如何迁移Esxi主机和虚拟机到新硬盘 因为去年底开始SSD和内存大幅降价,ITGeeker技术奇客就想着给自己的小主机升个级,换个三星1G的980硬盘,再加了一根32 ...

  5. CodeForces 1408D Searchlights

    题意 在二维平面有\(n\)个海盗,\(m\)个探照灯,你有两种操作 将所有海盗往上走一步 将所有海盗往右走一步 设海盗为\((a_i,b_i)\),探照灯为\((c_j,d_j)\),当且仅当\(a ...

  6. Codeforces 1257D - Yet Another Monster Killing Problem

    题意: 有\(n\)个怪物,每个怪物有攻击力\(a_i\)点:有\(m\)个英雄,每个英雄有攻击力\(p_i\)点,耐力\(s_{i}\)点. 怪物需要被依次杀死(按输入顺序). 每一天可以挑选一个英 ...

  7. [错误] SQL logic error near "date": syntax error

    问题的来源 今天把一个项目的数据库从MySQL改到Sqlite 调试时发生了这个错误. 百度又看不懂英文(很多是国外发的), 就折腾了一下 原因 C# Sqlite 不能使用参数前缀"?&q ...

  8. 如何成功将 API 客户的 transformer 模型推理速度加快 100 倍

    Transformers 已成为世界各地数据科学家用以探索最先进 NLP 模型.构建新 NLP 模块的默认库.它拥有超过 5000 个预训练和微调的模型,支持 250 多种语言,任君取用.无论你使用哪 ...

  9. 3步体验在DAYU200开发板上完成OpenHarmony对接华为云IoT

    本文分享自华为云社区<DAYU200+OpenHarmony 3.1.1对接华为云IOT[华为云IoT+鸿蒙]>,作者:DS小龙哥. 一.前言 OpenHarmony 3.1.1 是一个开 ...

  10. 一款广受社区好评的 WAF

    大家好,我是 Java陈序员,我们有时会搭建一个属于自己的网站,但是自建网站很容易被收到攻击,今天给大家介绍一款简单免费好用的 WAF 网站防护工具. WAF 是 Web Application Fi ...