本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000

作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。

Input

输入包含多组数据。

第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

Output

对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

Sample Input

【样例输入1】
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,为质数,1<=T<=10。

Sample Output

【样例输出1】
2
1
2
【样例输出2】
2
1
0
 
 
正解:快速幂+exgcd+BSGS
解题报告:
  快速幂+exgcd+BSGS。
  有一些细节。exgcd都快忘了......
  学习BSGS戳这里:http://www.cnblogs.com/ljh2000-jump/p/6230999.html
  
  

 //It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
using namespace std;
typedef long long LL;
const int MOD = ;
const int MAXM = ;
int k,p,first[MOD+],ecnt,to[MAXM],w[MAXM],next[MAXM],m,ans;
inline int gcd(int x,int y){ if(y==) return x; return gcd(y,x%y); }
inline int fast_pow(LL x,int y){ LL r=; while(y>) { if(y&) r*=x,r%=p; x*=x; x%=p; y>>=; } return (int)r; }
inline void wujie(){ printf("Orz, I cannot find x!"); }
inline int getint(){
int w=,q=; char c=getchar(); while((c<''||c>'') && c!='-') c=getchar();
if(c=='-') q=,c=getchar(); while (c>=''&&c<='') w=w*+c-'',c=getchar(); return q?-w:w;
} inline void exgcd(LL x,LL y,LL &d,LL &a,LL &b){
if(y==) { d=x; a=; b=; return ; }
exgcd(y,x%y,d,b,a);
b-=x/y*a;
} inline void solve(int a,int Z){
int GCD=gcd(a,p); if(Z%GCD!=) { wujie(); return ; }
LL x,y,GG; exgcd((LL)a,(LL)p,GG,x,y);
Z/=GCD; p/=GCD;
ans=Z*x%p; ans+=p; ans%=p;
printf("%d",ans);
} inline void insert(int x,int j){
int cc=x; x%=MOD; for(int i=first[x];i;i=next[i]) if(to[i]==cc) { w[i]=j; return ;}
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=cc; w[ecnt]=j;
} inline int query(int x){
int cc=x; x%=MOD; for(int i=first[x];i;i=next[i]) if(to[i]==cc) return w[i];
return -;
} inline void BSGS(int a,int b){
if(a%p==) { wujie(); return; }
//if(b==1) { printf("0"); return ; }
ecnt=; memset(first,,sizeof(first));
m=sqrt(p); if(m*m<p) m++; LL cc=b; insert(b,);
for(int i=;i<=m;i++) cc*=a,cc%=p,insert((int)cc,i);
cc=; LL cun=fast_pow(a,m);
for(int i=;i<=m;i++) {
cc*=cun; cc%=p; ans=query(cc);
if(ans==-) continue;
printf("%d",i*m-ans);
return ;
}
wujie();
} inline void work(){
int T=getint(); k=getint(); int x,y;
while(T--) {
x=getint(); y=getint(); p=getint();
if(k==) printf("%d",fast_pow(x,y));
else if(k==) solve(x,y);
else BSGS(x,y);
printf("\n");
}
} int main()
{
work();
return ;
}

BZOJ2242 [SDOI2011]计算器的更多相关文章

  1. [bzoj2242][Sdoi2011]计算器_exgcd_BSGS

    计算器 bzoj-2242 Sdoi-2011 题目大意:裸题,支持快速幂.扩展gcd.拔山盖世 注释:所有数据保证int,10组数据. 想法:裸题,就是注意一下exgcd别敲错... ... 最后, ...

  2. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  3. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  4. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  5. 【数学 BSGS】bzoj2242: [SDOI2011]计算器

    数论的板子集合…… Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最 ...

  6. [bzoj2242][SDOI2011][计算器] (Baby-Step-Giant-Step+快速幂+exgcd)

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  7. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  8. 2018.12.18 bzoj2242: [SDOI2011]计算器(数论)

    传送门 数论基础题. 对于第一种情况用快速幂,第二种用exgcdexgcdexgcd,第三种用bsgsbsgsbsgs 于是自己瞎yyyyyy了一个bsgsbsgsbsgs的板子(不知道是不是数据水了 ...

  9. bzoj千题计划246:bzoj2242: [SDOI2011]计算器

    http://www.lydsy.com/JudgeOnline/problem.php?id=2242 #include<map> #include<cmath> #incl ...

随机推荐

  1. HTML5-02 元素

    概述 HTML 文档主要由元素组成,且主要分为两大部分:头部 和 主体.如图: 头部 概述 <head> 元素包含了所有的头部标签.<head> 元素中通常包含脚本(scrip ...

  2. Windows Phone App Studio发布重要更新-支持Windows 8.1 源代码生成

    自2013年8月Apps Team发布Windows Phone App Studio以来,由于其低入门门槛和较好的易用性,用户和项目数量增长迅速,从Windows Phone Developer B ...

  3. Linux下解压超过4G的zip文件

    从Windows平台通过FTP上传一个大小约为6G的zip文件到Linux系统(Oracle Linux Server release 5.7)上,解压过程中出现如下错误: 1: [root@gsp ...

  4. SQL Server 2008 R2的发布订阅配置实践

    纸上得来终觉浅,绝知此事要躬行.搞技术尤其如此,看别人配置SQL SERVER的复制,发布-订阅.镜像.日志传送者方面的文章,感觉挺简单,好像轻轻松松的,但是当你自己去实践的时候,你会发现还真不是那么 ...

  5. MySQL 插入数据时,中文乱码问题的解决(转)

    当向 MySQL 数据库插入一条带有中文的数据形如 insert into employee values(null,'张三','female','1995-10-08','2015-11-12',' ...

  6. SQL Like模糊查询一些小知识

    模糊查询: where mc like '值':返回值等同于where mc ='值' where mc like '%值':匹配 名称是 '*值'(以“值”作为结尾)的所有数据,*表示任何值任何长度 ...

  7. OAF messageChoice 关联问题

    最近有个需求,就是采购订单的供应商要按照一级和二级来选,一级关联二级,二级关联供应商.之前的一级和二级都是用LovInput做的,现在想要改为messageChoice.如下图: 改为: 下面给大家介 ...

  8. linux常用系统监控命令

    原文:http://blog.sina.com.cn/s/blog_68f1c17001016uvy.html Linux提供了很多用于监控系统的工具,使用这些工具可以找到导致系统性能降低的瓶颈.系统 ...

  9. /var/log/messages文件监控

    近来项目中遇到一个问题,情况是这样的,我们使用ELK中的LOGSTASH来监控LINUX的系统日志文件:/var/log/messages文件,但这个文件默认的权限是600,这样很为难, 我们使用特定 ...

  10. NopCommerce Alipay 支付插件

    NopCommerce Alipay 支付插件 1.查找及下载NopCommerce Alipay插件 http://www.nopcommerce.com/p/963/alipay-payment- ...