1. 保存整个网络

torch.save(net, PATH)
model = torch.load(PATH)

2. 保存网络中的参数(速度快,占空间小)

torch.save(net.state_dict(),PATH)
model_dict = model.load_state_dict(torch.load(PATH))

model.state_dict函数会以有序字典OrderedDict形式返回模型训练过程中学习的权重weight和偏置bias参数,只有带有可学习参数的层(卷积层、全连接层等),以及注册的缓存(batchnorm的运行平均值)在state_dict 中才有记录。以下面的LeNet为例:

import torch.nn as nn
import torch.nn.functional as F class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = F.relu(self.conv1(x)) # input(3, 32, 32) output(16, 28, 28)
x = self.pool1(x) # output(16, 14, 14)
x = F.relu(self.conv2(x)) # output(32, 10, 10)
x = self.pool2(x) # output(32, 5, 5)
x = x.view(-1, 32 * 5 * 5) # output(32*5*5)
x = F.relu(self.fc1(x)) # output(120)
x = F.relu(self.fc2(x)) # output(84)
x = self.fc3(x) # output(10)
return x net = LeNet()
# 打印可学习层的参数
print(net.state_dict().keys())

上面的模型中,只有卷积层和全连接层具有可学习参数,所以net.state_dict()只会保存这两层的参数,而激活函数层的参数则不会保存。层的名字是上面实例化时确定的,如果是利用nn.Sequential定义多个层时,用层的位置索引表示每个层,如下所示:

示例:用nn.Sequential搭建模型时的state_dict

import torch.nn as nn
import torch.nn.functional as F class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.feature = nn.Sequential(
nn.Conv2d(3, 16, 5),
nn.MaxPool2d(2, 2),
nn.Conv2d(16, 32, 5),
nn.MaxPool2d(2, 2)) self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.feature(x) # input(3, 32, 32)
x = x.view(-1, 32 * 5 * 5) # output(32*5*5)
x = F.relu(self.fc1(x)) # output(120)
x = F.relu(self.fc2(x)) # output(84)
x = self.fc3(x) # output(10)
return x net = LeNet()
# 打印可学习层的参数
print(net.state_dict().keys()) 

★模型加载

  • 当我们对网络模型结构进行优化改进时,如果改进的部分不包含可学习的层,那么可以直接加载预训练权重。如:如果我们对上述lenet模型进行改进,将激活函数层改为nn.Hardswish(),因为不包含可学习的参数,所以改进的模型的state_dict()没有改变,仍然可以直接加载lenet模型的权重文件。
  • 当我们改进的部分改变了可学习的参数时,如果直接加载预训练权重就会发生不匹配的错误,比如:卷积的维度改变后会报错 size mismatch for conv.weight...(2)新增一些层后会出现 Unexpected key(s) in state_dict等

解决方案:遍历预训练文件的每一层参数,将能够匹配成功的参数提取出来,再进行加载。

import torch
import torch.nn as nn
import torch.nn.functional as F class LeNet_new(nn.Module):
def __init__(self):
super(LeNet_new, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 32, 5)
self.pool2 = nn.MaxPool2d(2, 2) def forward(self, x):
x = F.hardswish(self.conv1(x)) # input(3, 32, 32) output(16, 28, 28)
x = self.pool1(x) # output(16, 14, 14)
x = F.hardswish(self.conv2(x)) # output(32, 10, 10)
x = self.pool2(x) # output(32, 5, 5)
return x def intersect_dicts(da, db):
return {k: v for k, v in da.items() if k in db and v.shape == db[k].shape} net = LeNet_new()
state_dict = torch.load("Lenet.pth") # 加载预训练权重
print(state_dict.keys())
state_dict = intersect_dicts(state_dict, net.state_dict()) # 筛选权重参数
print(state_dict.keys())
net.load_state_dict(state_dict, strict=False) # 模型加载预训练权重中可用的权重

3. 保存网络参数,同时保存优化器参数、损失值等(方便追加训练)

如果还想保存某一次训练采用的优化器、epochs等信息,可将这些信息组合起来构成一个字典,然后将字典保存起来

# 保存
save_file = {"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args}
torch.save(save_file, "save_weights/model_{}.pth".format(epoch)) # 加载
checkpoint = torch.load(path, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1

4. 冻结训练

在加载预训练权重后,可能需要固定一部分模型的参数,只更新另一部分参数。有两种思路实现这个目标,一个是设置不要更新参数的网络层为requires_grad = False,另一个就是在定义优化器时只传入要更新的参数。最优写法时:将不更新的参数的requires_grad设置为False,同时不将该参数传入optimizer

示例:LeNet网络+MNIST手写识别+预训练模型加载+冻结训练

import torch
from torch import nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
from tqdm import tqdm transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_data = datasets.MNIST(root='../dataset', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
test_data = datasets.MNIST(root='../dataset', train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=False) class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.feature = nn.Sequential(
nn.Conv2d(1, 16, 5),
nn.MaxPool2d(2, 2),
nn.Conv2d(16, 32, 5),
nn.MaxPool2d(2, 2))
self.fc1 = nn.Linear(32 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.feature(x)
x = x.view(-1, 32 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x def train(epoch):
loss_runtime = 0.0
for batch, data in enumerate(tqdm(train_loader, 0)):
x, y = data
x = x.to(device)
y = y.to(device)
y_pred = model(x)
loss = criterion(y_pred, y)
loss_runtime += loss.item()
loss_runtime /= x.size(0)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("after %s epochs, loss is %.8f" % (epoch + 1, loss_runtime))
save_file = {"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch}
torch.save(save_file, "model_{}.pth".format(epoch)) def test():
correct, total = 0, 0
with torch.no_grad():
for (x, y) in test_loader:
x = x.to(device)
y = y.to(device)
y_pred = model(x)
_, prediction = torch.max(y_pred.data, dim=1)
correct += (prediction == y).sum().item()
total += y.size(0)
acc = correct / total
print("accuracy on test set is :%5f" % acc) if __name__ == '__main__':
start_epoch = 0
freeze_epoch = 0
resume = "model_5.pth"
freeze = True model = LeNet()
device = ("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 加载预训练权重
if resume:
checkpoint = torch.load(resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] # 冻结训练
if freeze:
freeze_epoch = 5
print("冻结前置特征提取网络权重,训练后面的全连接层")
for param in model.feature.parameters():
param.requires_grad = False # 将不更新的参数的requires_grad设置为False,节省了计算这部分参数梯度的时间
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.01, momentum=0.5)
for epoch in range(start_epoch, start_epoch + freeze_epoch):
train(epoch)
test()
print("解冻前置特征提取网络权重,接着训练整个网络权重")
for param in model.feature.parameters():
param.requires_grad = True
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.01, momentum=0.5) for epoch in range(start_epoch + freeze_epoch, 100):
train(epoch)
test()

  

参考:

1.加载预训练权重

模型权重保存、加载、冻结(pytorch)的更多相关文章

  1. 全面解析Pytorch框架下模型存储,加载以及冻结

    最近在做试验中遇到了一些深度网络模型加载以及存储的问题,因此整理了一份比较全面的在 PyTorch 框架下有关模型的问题.首先咱们先定义一个网络来进行后续的分析: 1.本文通用的网络模型 import ...

  2. 超详细的Tensorflow模型的保存和加载(理论与实战详解)

    1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...

  3. tensorflow模型持久化保存和加载

    模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...

  4. tensorflow模型持久化保存和加载--深度学习-神经网络

    模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...

  5. docker 保存 加载(导入 导出镜像

    tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...

  6. pytorch GPU训练好的模型使用CPU加载

    torch.load('tensors.pt') # 把所有的张量加载到CPU中 torch.load('tensors.pt', map_location=lambda storage, loc: ...

  7. 三、TensorFlow模型的保存和加载

    1.模型的保存: import tensorflow as tf v1 = tf.Variable(1.0,dtype=tf.float32) v2 = tf.Variable(2.0,dtype=t ...

  8. 基于FBX SDK的FBX模型解析与加载 -(三)

    http://blog.csdn.net/bugrunner/article/details/7229416 6. 加载Camera和Light 在FBX模型中除了几何数据外较为常用的信息可能就是Ca ...

  9. 基于FBX SDK的FBX模型解析与加载 -(二)

    http://blog.csdn.net/bugrunner/article/details/7211515 5. 加载材质 Material是一个模型渲染时必不可少的部分,当然,这些信息也被存到了F ...

  10. Python之模型的保存和加载-5.3

    一.模型的保存,主要是我们在训练完成的时候把训练下来的数据保存下来,这个也就是我们后续需要使用的模型算法.模型的加载,在保存好的模型上面我们通过原生保存好的模型,去计算新的数据,这样不用每次都要去训练 ...

随机推荐

  1. 【Redis】常用命令介绍

    一.Redis常用基本命令 官方文档:https://redis.io/commands/ 参考文档:http://redisdoc.com/ #可以使用help命令查看各redis命令用法[root ...

  2. 记一次 .NET 某车零件MES系统 登录异常分析

    一:背景 1. 讲故事 这个案例有点特殊,以前dump分析都是和软件工程师打交道,这次和非业内人士交流,隔行如隔山,从指导dump怎么抓到问题解决,需要一个强大的耐心. 前几天有位朋友在微信上找到我, ...

  3. 【使用git之旅】

    前言 在学习各种语言的时候我总喜欢把例子改成有自己想法并且有趣的程序, 但是时间一长,我发现在本地管理很麻烦,于是乎想到了github和gitee, 然后昨晚一时兴起,就开始了学习,开个博客记录一下我 ...

  4. WPF 入门笔记 - 01 - 入门基础以及常用布局

    本篇为学习博客园大佬圣殿骑士的<WPF基础到企业应用系列>以及部分DotNet菜园的<WPF入门教程系列>所作笔记,对应圣殿骑士<WPF基础到企业应用系列>第 1 ...

  5. PHP编程与系统开发

    PHP开发环境配置 一.开发环境 1.XAMPP或LNMP.WNMP,先安装widows版本的XMAPP-5.6版本(PHP 5.6) 2.VSCode:微软开发的集成开发环境(IDE) 二.安装教程 ...

  6. Manjaro linux 安装svn 并在文件管理器里显示相关图标

    需要先安装svn linux版打开终端执行 sudo pacman -S svn 安装完成后执行一下 svn --version 出现这个就说明svn已经安装完成了,这个时候我们可以执行 svn ch ...

  7. Flutter调优--深入探究MediaQuery引起界面Rebuild的原因及解决办法

    前言 我们可以通过MediaQuery.of(context)方法获取到一些设备和系统的相关信息,比如状态栏的高度.当前是否是黑暗模式等等,使用起来相当方便,但是也要注意可能引起的页面rebuild问 ...

  8. jQuery实时显示日期、时间

    jQuery实时显示日期.时间 html: <span id="time"></span> js: <script src="Js/jque ...

  9. CentOS 8 已是绝版?还有后续么?

    文章由 Linux爱好者( ID: LinuxHub)整理自开源中国 + 红帽官方.本文章经原作者同意后授权转载. 2020年12月8日,CentOS 项目宣布,CentOS 8 将于 2021 年底 ...

  10. pyhton - parallel - programming - cookbook(THREAD)

    基于线程的并行 通常,一个应用有一个进程,分成多个独立的线程,并行运行.互相配合,执行不同类型的任务. 线程是独立的处理流程,可以和系统的其他线程并行或并发地执行.多线程可以共享数据和资源,利用所谓的 ...