前言

大家好这里是,白泽,这期分析一下 golang 开源高性能 websocket 库 gws。

视频讲解请关注B站:白泽talk

介绍

  1. gws:https://github.com/lxzan/gws |GitHub 1.2k,高性能的 websocket 库,代码双语注释,适合有开发经验的同学进阶学习。
  2. gws 的两个特性
  • High IOPS Low Latency(高I/O,低延迟)

  • Low Memory Usage(低内存占用)

可以从下图看到: payload 越高,性能相比其他 websocket 库越是优越,如何做到?

gws chatroom 架构图

这是 gws 的官方聊天室 demo 的架构图,绘制在这里帮助各位理解什么是全双工的通信模式。

WebSocket 与 HTTP 一样是应用层的协议,只需要 TCP 完成三次握手之后,Golang 的 net/http 库提供了 Hijack() 方法,将 TCP 套接字(活跃的一个会话),从 HTTP 劫持,此后 tcp 的连接将由 WebSocket 管理,脱离了 HTTP 协议的范畴。

而只要获取了 TCP 的套接字,何时发送和接受数据,都是由应用层决定的,传输层的 TCP 套接字只是被编排的对象(单工/双工),自然可以实现服务端主动发送数据。

缓冲池

为什么 payload 越高,性能相比其他 websocket 库越是优越?

原因:gws 中的读写操作,全部使用了缓冲池。

binaryPool    = internal.NewBufferPool(128, 256*1024) // 缓冲池

读缓冲:每次读取是一次系统调用,因此可以读取一段数据,且用一个 offset 定位消费的位置,减少读取次数。

写缓冲:每次写入是一次系统调用,因此可以多次写入 buffer,统一 flush。

缓冲池:为不同大小的 buffer 提供了缓冲池,大段 buffer 的创建次数减少,减少 GC 压力 & 创建对象和销毁对象时间。

// NewBufferPool Creating a memory pool
// Left, right indicate the interval range of the memory pool, they will be transformed into pow(2,n)。
// Below left, Get method will return at least left bytes; above right, Put method will not reclaim the buffer.
func NewBufferPool(left, right uint32) *BufferPool {
var begin, end = int(binaryCeil(left)), int(binaryCeil(right))
var p = &BufferPool{
begin: begin,
end: end,
shards: map[int]*sync.Pool{},
}
for i := begin; i <= end; i *= 2 {
capacity := i
p.shards[i] = &sync.Pool{
New: func() any { return bytes.NewBuffer(make([]byte, 0, capacity)) },
}
}
return p
}

使用循环从 beginend,每次容量翻倍(乘以2),为每个容量创建一个 sync.Pool 实例。sync.Pool 是Go语言标准库中的一个类型,用于存储和回收临时对象。

使用缓冲池中的 bufferconn(网络连接)中读取和写入数据时,通常会执行以下步骤:

  1. 从缓冲池获取缓冲区:使用 Get 方法从缓冲池中获取一个 buffer
  2. 读取数据:如果需要从 conn 读取数据,可以将 buffer 用作读取操作的目的地。
  3. 处理数据:根据需要处理读取到的数据。
  4. 写入数据:如果需要写入数据,可以将数据写入从缓冲池获取的 buffer,然后从 buffer 写入 conn
  5. 释放缓冲区:使用完毕后,将 buffer 放回缓冲池,以便重用。

设计一个 WebScket 库

编写WebSocket库时,有几个关键点会影响其性能,尤其是在高并发场景下。

下面针对这些场景,部分给出一些 demo 写法(伪代码),可以从中提炼一些通用的项目设计方法:

  • 事件驱动模型: 使用非阻塞的事件驱动架构可以提高性能,因为它允许WebSocket库在单个线程内处理多个连接,而不会因等待I/O操作而阻塞。
package main

import (
"fmt"
"time"
) func main() {
eventChan := make(chan string)
readyChan := make(chan bool) // 模拟WebSocket连接
go func() {
time.Sleep(2 * time.Second)
eventChan <- "connected"
readyChan <- true
}() // 事件处理循环
for {
select {
case event := <-eventChan:
fmt.Println("Event received:", event)
case <-readyChan:
fmt.Println("WebSocket is ready to use")
return
}
}
}
  • 并发处理: 库如何处理并发连接和消息是影响性能的重要因素。使用goroutines或线程池可以提高并发处理能力。

  • 消息压缩: 支持消息压缩(如permessage-deflate扩展)可以减少传输数据量,但同时也会增加CPU的使用率,需要找到合适的平衡点。

  • 内存管理: 优化内存使用,比如通过减少内存分配和重用缓冲区,可以提高性能并减少垃圾回收的压力。

var buffer = make([]byte, 0, 1024)

func readMessage(conn *websocket.Conn) {
_, buffer, err := conn.ReadMessage()
if err != nil {
// 处理错误
}
// 使用buffer中的数据
}
  • 连接池管理: 有效的连接池管理可以减少连接建立和关闭的开销,特别是在长连接和频繁通信的场景下。
type WebSocketPool struct {
pool map[*websocket.Conn]struct{}
} func (p *WebSocketPool) Add(conn *websocket.Conn) {
p.pool[conn] = struct{}{}
} func (p *WebSocketPool) Remove(conn *websocket.Conn) {
delete(p.pool, conn)
} func (p *WebSocketPool) Broadcast(message []byte) {
for conn := range p.pool {
conn.WriteMessage(websocket.TextMessage, message)
}
}
  • 锁和同步机制: 在多线程或goroutine环境中,合理的锁和同步机制是必要的,以避免竞态条件和死锁,但过多的锁竞争会降低性能。
import "sync"

var pool = &WebSocketPool{
pool: make(map[*websocket.Conn]struct{}),
}
var mu sync.Mutex func broadcast(message []byte) {
mu.Lock()
defer mu.Unlock()
for conn := range pool.pool {
conn.WriteMessage(websocket.TextMessage, message)
}
}
  • I/O模型: 使用非阻塞I/O或异步I/O模型可以提高性能,因为它们允许在等待网络数据时执行其他任务。
func handleConnection(conn *websocket.Conn) {
go func() {
for {
_, message, err := conn.ReadMessage()
if err != nil {
return // 处理错误
}
// 处理接收到的消息
}
}()
}
  • 协议实现: 精确且高效的WebSocket协议实现,包括帧的处理、掩码的添加和去除、以及控制帧的管理,都是影响性能的因素。
func (c *Conn) genFrame(opcode Opcode, payload internal.Payload, isBroadcast bool) (*bytes.Buffer, error) {
if opcode == OpcodeText && !payload.CheckEncoding(c.config.CheckUtf8Enabled, uint8(opcode)) {
return nil, internal.NewError(internal.CloseUnsupportedData, ErrTextEncoding)
} var n = payload.Len() if n > c.config.WriteMaxPayloadSize {
return nil, internal.CloseMessageTooLarge
} var buf = binaryPool.Get(n + frameHeaderSize)
buf.Write(framePadding[0:]) if c.pd.Enabled && opcode.isDataFrame() && n >= c.pd.Threshold {
return c.compressData(buf, opcode, payload, isBroadcast)
} var header = frameHeader{}
headerLength, maskBytes := header.GenerateHeader(c.isServer, true, false, opcode, n)
_, _ = payload.WriteTo(buf)
var contents = buf.Bytes()
if !c.isServer {
internal.MaskXOR(contents[frameHeaderSize:], maskBytes)
}
var m = frameHeaderSize - headerLength
copy(contents[m:], header[:headerLength])
buf.Next(m)
return buf, nil
}
  • 错误处理和恢复: 健壮的错误处理和异常恢复机制可以防止个别连接的问题影响整个服务的性能。

  • 测试和基准: 通过广泛的测试和基准测试来识别性能瓶颈,并根据测试结果进行优化。

Golang 高性能 Websocket 库 gws 使用与设计(一)的更多相关文章

  1. golang gorilla websocket例子

    WebSocket协议是基于TCP的一种新的网络协议.它实现了浏览器与服务器全双工(full-duplex)通信--允许服务器主动发送信息给客户端. WebSocket通信协议于2011年被IETF定 ...

  2. Golang 的 TOML库

    TOML 的全称是 Tom's Obvious, Minimal Language,因为它的作者是 GitHub 联合创始人 Tom Preston-Werner. TOML 的目标是成为一个极简的配 ...

  3. golang实现WebSocket的商业化使用的开发逻辑(1)

    WebSocket是什么 WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议.其最大特点之一就是:服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对 ...

  4. Golang一日一库之 日志库 zap

    简介 在开发过程中 会使用到日志库去记录错误的日志,尤其是golang中 有无穷无尽的error 如果不记录,当你的代码出错,就无从排错了. zap 是开源的 Go 高性能日志库 主要有以下特点: 支 ...

  5. 猿题库 iOS 客户端架构设计

    原文: http://mp.weixin.qq.com/s?__biz=MjM5NTIyNTUyMQ==&mid=444322139&idx=1&sn=c7bef4d439f4 ...

  6. golang之websocket 源码分析

    下载go的websocket包. 1. 通过google官方的方法, 需要hg来同步代码. 由于墙的原因, 还需要设置代理. 比较麻烦 2. http://gopm.io/ 通过该网站下载, 这是go ...

  7. 一个很cool的C#的高性能数学库

    High Performance Math Library for C# and .NET是一个很cool的C#的高性能数学库,3D效果也很不错,下图是首页上的一个例子.他也有一个交互的网页,你可以自 ...

  8. Golang实现requests库

    Golang实现requests库 简单的封装下,方便使用,像python的requests库一样. Github地址 Github 支持 GET.POST.PUT.DELETE applicatio ...

  9. Golang笔记(二)面向对象的设计

    Golang笔记(二)面向对象的设计 Golang本质还是面向过程的语言,但它实现了一些OOP的特性,包括抽象.封装.继承和多态. 抽象和封装 Golang和C语言一样以struct为数据结构核心,不 ...

  10. YxdJSON - Delphi 高性能 JSON 库(支持RTTI和序列化操作)

    源:YxdJSON - Delphi 高性能 JSON 库(支持RTTI和序列化操作) Delphi 高性能 JSON 库(支持RTTI和序列化操作) 支持平台: Windows, Android, ...

随机推荐

  1. Xenocode Postbuild——C#代码混淆器使用方法

    安装 不多作赘述 使用步骤 选择[application]选项卡,选择[add],如果添加的是exe,则[Preset]选择第一项,添加的是dll则选择第二项 选择[Protect]选项卡,将两个都勾 ...

  2. 企业级nginx内核优化篇

    1. cpu核心配置 方法1: worker_processes auto; 自动调用[推荐] 方法2: worker_processes 4; 手工配置 检查CPU核心:yum install nu ...

  3. Qt信号与槽的使用

    参考视频:黑马程序员https://www.bilibili.com/video/BV1XW411x7NU?p=4 1  新建工程 先创建一个控件基础工程,创建后的界面如下: 主函数我们不需要修改,就 ...

  4. pandas基础--汇总和计算描述统计

    pandas含有是数据分析工作变得更快更简单的高级数据结构和操作工具,是基于numpy构建的. 本章节的代码引入pandas约定为:import pandas as pd,另外import numpy ...

  5. 算法金 | 读者问了个关于深度学习卷积神经网络(CNN)核心概念的问题

    ​大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 读者问了个关于卷积神经网络核心概念的问题,如下, [问]神经元.权重.激活函数.参数 ...

  6. vue过滤器 - filters

    在数据被渲染之前,可以对其进行进一步处理,比如将字符截取或者将小写统一转换为大写等等,过滤器本身就是一个方法. 过滤器可以定义全局或局部 # 全局 // 回调函数中的参数1永久是绑定的数据 Vue.f ...

  7. scrcpy 安卓投屏

    下载地址:https://github.com/Genymobile/scrcpy 电脑是WINDOWS的,下载WINDOWS版scrcpy:scrcpy-win64-v1.14.zip,解压到:D: ...

  8. 项目管理--PMBOK 读书笔记(8)【项目质量管理】

    1.数据表现-流程图: 流程图也称为过程图,用来显示在一个或者多个输入转化为一个或者多个输入出的过程. 2.质量工具图比较: 发现问题:控制图(七点规则等).趋势图 寻找原因:因果图.流程图 分析原因 ...

  9. 5分钟理透LangChain的Chain

    LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区.而LangChain最核心的部分非 Chain 莫属. 那Chain到底是个啥,概念比 ...

  10. nomp矿池源码详解

    1 项目简介 Node Open Mining Portal(简称NOMP)是一个由Node.js编写的高效.可扩展的加密货币挖矿池软件,专为经验丰富的系统管理员和开发者设计.它包含了Stratum挖 ...