绘图函数

plt.plot()函数可以通过相应的参数设置绘图风格。

plt.plot(*args, scalex=True, scaley=True, data=None, **kwargs)

Docstring:
Plot y versus x as lines and/or markers. Call signatures:: plot([x], y, [fmt], *, data=None, **kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) The coordinates of the points or line nodes are given by *x*, *y*. The optional parameter *fmt* is a convenient way for defining basic
formatting like color, marker and linestyle. It's a shortcut string
notation described in the *Notes* section below. >>> plot(x, y) # plot x and y using default line style and color
>>> plot(x, y, 'bo') # plot x and y using blue circle markers
>>> plot(y) # plot y using x as index array 0..N-1
>>> plot(y, 'r+') # ditto, but with red plusses You can use `.Line2D` properties as keyword arguments for more
control on the appearance. Line properties and *fmt* can be mixed.
The following two calls yield identical results: >>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, color='green', marker='o', linestyle='dashed',
... linewidth=2, markersize=12) When conflicting with *fmt*, keyword arguments take precedence. **Plotting labelled data** There's a convenient way for plotting objects with labelled data (i.e.
data that can be accessed by index ``obj['y']``). Instead of giving
the data in *x* and *y*, you can provide the object in the *data*
parameter and just give the labels for *x* and *y*:: >>> plot('xlabel', 'ylabel', data=obj) All indexable objects are supported. This could e.g. be a `dict`, a
`pandas.DataFame` or a structured numpy array. **Plotting multiple sets of data** There are various ways to plot multiple sets of data. - The most straight forward way is just to call `plot` multiple times.
Example: >>> plot(x1, y1, 'bo')
>>> plot(x2, y2, 'go') - Alternatively, if your data is already a 2d array, you can pass it
directly to *x*, *y*. A separate data set will be drawn for every
column. Example: an array ``a`` where the first column represents the *x*
values and the other columns are the *y* columns:: >>> plot(a[0], a[1:]) - The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
groups:: >>> plot(x1, y1, 'g^', x2, y2, 'g-') In this case, any additional keyword argument applies to all
datasets. Also this syntax cannot be combined with the *data*
parameter. By default, each line is assigned a different style specified by a
'style cycle'. The *fmt* and line property parameters are only
necessary if you want explicit deviations from these defaults.
Alternatively, you can also change the style cycle using the
'axes.prop_cycle' rcParam. Parameters
----------
x, y : array-like or scalar
The horizontal / vertical coordinates of the data points.
*x* values are optional and default to `range(len(y))`. Commonly, these parameters are 1D arrays. They can also be scalars, or two-dimensional (in that case, the
columns represent separate data sets). These arguments cannot be passed as keywords. fmt : str, optional
A format string, e.g. 'ro' for red circles. See the *Notes*
section for a full description of the format strings. Format strings are just an abbreviation for quickly setting
basic line properties. All of these and more can also be
controlled by keyword arguments. This argument cannot be passed as keyword. data : indexable object, optional
An object with labelled data. If given, provide the label names to
plot in *x* and *y*. .. note::
Technically there's a slight ambiguity in calls where the
second label is a valid *fmt*. `plot('n', 'o', data=obj)`
could be `plt(x, y)` or `plt(y, fmt)`. In such cases,
the former interpretation is chosen, but a warning is issued.
You may suppress the warning by adding an empty format string
`plot('n', 'o', '', data=obj)`. Other Parameters
----------------
scalex, scaley : bool, optional, default: True
These parameters determined if the view limits are adapted to
the data limits. The values are passed on to `autoscale_view`. **kwargs : `.Line2D` properties, optional
*kwargs* are used to specify properties like a line label (for
auto legends), linewidth, antialiasing, marker face color.
Example:: >>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
>>> plot([1,2,3], [1,4,9], 'rs', label='line 2') If you make multiple lines with one plot command, the kwargs
apply to all those lines. Here is a list of available `.Line2D` properties: agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
alpha: float
animated: bool
antialiased or aa: bool
clip_box: `.Bbox`
clip_on: bool
clip_path: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None]
color or c: color
contains: callable
dash_capstyle: {'butt', 'round', 'projecting'}
dash_joinstyle: {'miter', 'round', 'bevel'}
dashes: sequence of floats (on/off ink in points) or (None, None)
drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
figure: `.Figure`
fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
gid: str
in_layout: bool
label: object
linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
linewidth or lw: float
marker: marker style
markeredgecolor or mec: color
markeredgewidth or mew: float
markerfacecolor or mfc: color
markerfacecoloralt or mfcalt: color
markersize or ms: float
markevery: None or int or (int, int) or slice or List[int] or float or (float, float)
path_effects: `.AbstractPathEffect`
picker: float or callable[[Artist, Event], Tuple[bool, dict]]
pickradius: float
rasterized: bool or None
sketch_params: (scale: float, length: float, randomness: float)
snap: bool or None
solid_capstyle: {'butt', 'round', 'projecting'}
solid_joinstyle: {'miter', 'round', 'bevel'}
transform: `matplotlib.transforms.Transform`
url: str
visible: bool
xdata: 1D array
ydata: 1D array
zorder: float Returns
-------
lines
A list of `.Line2D` objects representing the plotted data.
颜色设置

通过color参数设置。

#标准颜色名称
plt.plot(x, np.sin(x-0), color='blue')

#缩写颜色代码(rgbcmyk)
plt.plot(x, np.sin(x-1), color='g')

#范围在0~1的灰度值
plt.plot(x, np.sin(x-2), color='0.75')

#十六进制(RRGGBB, 00~FF)
plt.plot(x, np.sin(x-3), color='#FFDD44')

#RGB元组,范围在0~1
plt.plot(x, np.sin(x-4), color=(1.0, 0.2, 0.3))

#HTML颜色名称
plt.plot(x, np.sin(x-5), color='chartreuse')

线条风格设置

通过linesyle设置线条风格。

#实线
plt.plot(x, np.sin(x-0), linestyle='solid')
# plt.plot(x, np.sin(x-0), linestyle='-')
#虚线
plt.plot(x, np.sin(x-1), linestyle='dashed')
# plt.plot(x, np.sin(x-0), linestyle='--')
#点划线
plt.plot(x, np.sin(x-2), linestyle='dashdot')
# plt.plot(x, np.sin(x-0), linestyle='-.')
#实点线
plt.plot(x, np.sin(x-3), linestyle='dotted')
# plt.plot(x, np.sin(x-0), linestyle=':')

组合设置

将linestyle和color编码组合起来。

#绿色实线
plt.plot(x, x + 0, '-g')
#青色虚线
plt.plot(x, x + 1, '--c')
#黑色点划线
plt.plot(x, x + 2, '-.k')
#红色实点线
plt.plot(x, x + 3, ':r')

Matplotlib绘图设置---图形颜色和风格调整的更多相关文章

  1. matplotlib学习——设置线条颜色及形状

    在图形表示中,不同的画布或画布中不同的函数,我们常常要用不同的形状或颜色来区分开,这里小编向大家介绍这些参数的表示方法: 一.控制颜色 b--blue             c--cyan(青色)  ...

  2. Python matplotlib绘图设置图例

    一.语法简介 plt.legend(loc=2,edgecolor='red',facecolor='green',shadow='True',fontsize=10) #edgecolor 图例边框 ...

  3. Python matplotlib绘图设置坐标轴的标题

    一.语法简介 plt.xlabel("销售月份",fontsize=16,color='red',fontweight='bold',loc='center',background ...

  4. 【划重点】Python matplotlib绘图设置坐标轴的刻度

    一.语法简介 plt.xticks(ticks,labels,rotation=30,fontsize=10,color='red',fontweight='bold',backgroundcolor ...

  5. 【原】在Matplotlib绘图中添加Latex风格公式

    Matplotlib绘图的过程中,可以为各个轴的Label,图像的Title.Legend等元素添加Latex风格的公式. 只需要在Latex公式的文本前后各增加一个$符号,Matplotlib就可以 ...

  6. matplotlib 设置图形大小时 figsize 与 dpi 的关系

    matplotlib 中设置图形大小的语句如下: fig = plt.figure(figsize=(a, b), dpi=dpi) 其中: figsize 设置图形的大小,a 为图形的宽, b 为图 ...

  7. matplotlib绘图教程,设置标签与图例

    大家好,欢迎大家阅读周四数据处理专题,我们继续介绍matplotlib作图工具. 在上一篇文章当中我们介绍了matplotlib这个包当中颜色.标记和线条这三种画图的设置,今天我们同样也介绍三种新的设 ...

  8. UI设计篇·入门篇·绘制简单自定义矩形图/设置按钮按下弹起颜色变化/设置图形旋转

    Android的基本控件和图形有限,难以满足所有的实际需要和设计需求,好在Android给出了相对完善的图形绘制和自定义控件的API,利用这些API,可以基本满足设计的需求. 自定义图像和控件的方法: ...

  9. Matplotlib绘图双纵坐标轴设置及控制设置时间格式

    双y轴坐标轴图 今天利用matplotlib绘图,想要完成一个双坐标格式的图. fig=plt.figure(figsize=(20,15)) ax1=fig.add_subplot(111) ax1 ...

  10. 使用ECharts制作图形时,如何设置指定图形颜色?

    使用ECharts制作图形时,图形颜色是默认的颜色,有时需求需要指定图形颜色,这就需要自己去设置. 在option下的series属性中设置itemStyle,如下所示: itemStyle: { n ...

随机推荐

  1. 需要入门IT行业并且想做java后台小伙伴-简单谈谈后台开发Spring与SpringBoot

    1.Spring能做什么 1.1.Spring的能力 1.2.Spring的生态 https://spring.io/projects/spring-boot 覆盖了: web开发 数据访问 安全控制 ...

  2. 前后端分离项目(七):实现"添加"功能(前端视图)

    好家伙,本篇用于测试"添加"接口,为后续"用户注册"功能做铺垫   (完整代码在最后) 我们要实现"添加"功能 老样子我们先来理清一下思路, ...

  3. 【Azure 环境】Azure门户中 Metrics 图表的聚合指标每项具体代表什么意思呢?

    问题描述 下图中,指标里的每项聚合指标具体代表什么呢? 问题解答 Azure Metrics 指标中提供了五种基本的聚合类型. Sum - 在聚合间隔内捕获的所有值的总和. 有时称为总聚合. Coun ...

  4. expect tcl 摘录

    目录 部分参考来源说明 例子 expect命令 核心命令有三个 spawn.expect.send 其他expect命令 expect命令的选项 变量 tcl摘录 数据类型 符号 命令 其他说明 部分 ...

  5. sqlmap 绕过WAF

    1.基本的语法 sqlmap 更新  sqlmap -update 具体的使用方法: sqlmap -u url --current-user sqlmap -u url --current-db s ...

  6. linux压缩文件并排除指定目录

    今天要在linux上打包一个项目另作他用,但是项目图片都是放本地服务器的,整个项目打包好后有2G多下载十分费时.项目中的图片我们可以不要,所以压缩的时候要排除图片目录. 具体命令如下: // 参数说明 ...

  7. TLS原理与实践(二)

    主页 个人微信公众号:密码应用技术实战 个人博客园首页:https://www.cnblogs.com/informatics/ 引言 在上一篇博客中,我们通过<一文读懂TLS1.2协议](ht ...

  8. vim技巧--提取文本与文本替换

    前几天遇到一个使用情景,需要从一个包含各个读取代码文件路径及名字的文件中把文件路径提取出来,做一个filelist,这里用到了文本的提取和替换,这里做个小总结记录一下. 从网上找了一个作者写的代码用来 ...

  9. 3D渲染慢,直接买显卡还是用云渲染更划算?

    3D渲染对建筑师和设计师来说并不陌生,3D渲染的过程中出现渲染卡顿.特殊材质难以渲染,或者本地配置不足.本地渲染资源不够时,常常会影响工作效率.本文比较了3D渲染时,为提高工作效率,买显卡还是用云渲染 ...

  10. 开发一个本地的供需求平台软件小程序单靠广告费就能月入3w+,你觉得香不香!

    最近合作了一个客户,需求是把现成的这种网站包装成App,在各大应用商店也能下载,做用户留存. 需求不复杂,现在已经完工了.事后处于好奇我又分析了一下这个项目的商业模式发现还挺好的,看前台数据基本上已经 ...