section>

Problem Statement

From the point $(0,0)$ in a two-dimensional plane, let us move the distance of $1$ toward the point $(A, B)$. Find our coordinates after the move.

Here, after moving the distance of $d$ from a point $X$ to a point $Y$ ($d \le$ length of the segment $XY$), we are at the point on the segment $XY$ whose distance from $X$ is $d$.

The Constraints guarantee that the distance between the points $(0, 0)$ and $(A, B)$ is at least $1$.

Constraints

  • All values in input are integers.
  • $0 \le A,B \le 1000$
  • $(A,B) \neq (0,0)$

Input

Input is given from Standard Input in the following format:

$A$ $B$

Output

Let $(x, y)$ be our coordinates after the move. Print $x$ and $y$ in this order, separated by a space.

Your output is considered correct when, for each printed value, the absolute or relative error from the judge's answer is at most $10^{−6}$.


Sample Input 1

3 4

Sample Output 1

0.600000000000 0.800000000000

Printing 0.5999999999 0.8000000001, for example, would also be accepted.


Sample Input 2

1 0

Sample Output 2

1.000000000000 0.000000000000

We may arrive at $(A, B)$.


Sample Input 3

246 402

Sample Output 3

0.521964870245 0.852966983083

可以用一个相似。首先求出 $(x,y)$ 到原点的距离 $d$ ,然后把他给相似到 $d$,也就是 $x/=d$,$y/=d$。

#include<bits/stdc++.h>
int x,y;
double d;
int main()
{
scanf("%d%d",&x,&y);
d=sqrt(x*x+y*y);
printf("%.8lf %.8lf",x/d,y/d);
}

[ABC246B] Get Closer的更多相关文章

  1. A CLOSER LOOK AT CSS

    A CLOSER LOOK AT CSS css-review Congratulations! You worked hard and made it to the end of a challen ...

  2. Here we take a closer look at the Jordans Unveil

    Here we take a closer look at the Jordans Unveil. This Mens release is both unique and striking. The ...

  3. 论文笔记 | A Closer Look at Spatiotemporal Convolutions for Action Recognition

    ( 这篇博文为原创,如需转载本文请email我: leizhao.mail@qq.com, 并注明来源链接,THX!) 本文主要分享了一篇来自CVPR 2018的论文,A Closer Look at ...

  4. But what exactly do we mean by "gets closer to"?

    https://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/ [将输入转化为输出:概率分布] When we develop a ...

  5. They're much closer in spirit to how our brains work than feedforward networks.

    http://neuralnetworksanddeeplearning.com/chap1.html Up to now, we've been discussing neural networks ...

  6. Table View Programming Guide for iOS---(六)---A Closer Look at Table View Cells

    A Closer Look at Table View Cells A table view uses cell objects to draw its visible rows and then c ...

  7. Facebook's React vs AngularJS: A Closer Look

    When we launched React | A JavaScript library for building user interfaces two weeks ago there were ...

  8. NASA: A Closer View of the Moon(近距离观察月球)

    Posted to Twitter by @Astro_Alex, European Space Agency astronaut Alexander Gerst, this image shows ...

  9. Multipath TCP on iOS11 : A closer look at the TCP Options(转)

    Multipath TCP uses a variety of TCP options to use different paths simultaneously. Several Multipath ...

  10. Shorthand Argument Names $0 : 只用于指代Closer声明中的形参

    Shorthand Argument Names Swift automatically provides shorthand argument names to inline closures, w ...

随机推荐

  1. API接口的对接流程和注意事项

    ​ API接口的对接流程和注意事项 随着互联网技术的发展和数字化时代的到来,API接口已经成为应用程序之间进行数据交换和通信的重要方式.API即应用程序接口,是一种定义.调用和交互的规范,使得不同应用 ...

  2. oracle导入导出某个schema数据

    背景 公司之前部门拆分,但一些服务并没有拆分清楚.其中一个老服务,两个部门都在用,现在为了避免互相影响,决定克隆该服务.克隆就要克隆全套,当然也包括数据库,我们这个老服务,用的oracle,所以,就涉 ...

  3. LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫描算法与树上 DP 问题

    ️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问. 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越 ...

  4. Llama2-Chinese项目:2.3-预训练使用QA还是Text数据集?

      Llama2-Chinese项目给出pretrain的data为QA数据格式,可能会有疑问pretrain不应该是Text数据格式吗?而在Chinese-LLaMA-Alpaca-2和open-l ...

  5. Codechef - Longest AND Subarray(位运算)

    题目大意   给定一个正整数N,其序列为[1, 2, 3, ..., N],找到一个长度最大的连续子列,使得其所有元素取与运算的结果为正(最终输出只需要输出最大长度即可). 思路   刚开始可能并不好 ...

  6. destoon根据标题删除重复数据

    因为采集数据比较庞大,难免出现重复数据,所以写了一个根据标题进行删除重复数据的mysql命令,需要的朋友可以使用. 1 2 3 4 DELETE from destoon_article_36 whe ...

  7. 记一次 .NET某账本软件 非托管泄露分析

    一:背景 1. 讲故事 中秋国庆长假结束,哈哈,在老家拍了很多的短视频,有兴趣的可以上B站观看:https://space.bilibili.com/409524162 ,今天继续给大家分享各种奇奇怪 ...

  8. 安装 Android x86 并开启 arm 兼容

    安装 Android x86 并开启 arm 兼容 Win 11 下开启了 Hyper-v,尝试了各种安卓模拟器,要么不能设置代理(BlueStacks),要么/system目录没办法设置. 获取 A ...

  9. docker本地仓库-registry

    Docker本地私有仓库实战: docker仓库主要用于存放docker镜像,docker仓库分为公有仓库和私有仓库,基于registry可以搭建本地私有仓库,使用私有仓库的优点如下: 节省网络带宽, ...

  10. 拒绝恶意IP登录服务器

    拒绝恶意IP登录服务器,并加入防火墙黑名单 #!/bin/bash #2020-03-20 16:39 #auto refuse ip dlu #By Precious ############### ...