介绍:

欢迎来到本篇文章!在这里,我们将探讨一个常见而重要的自然语言处理任务——文本分类。具体而言,我们将关注情感分析任务,即通过分析电影评论的情感来判断评论是正面的、负面的。

展示:

训练展示如下:



实际使用如下:

实现方式:

选择PyTorch作为深度学习框架,使用电影评论IMDB数据集,并结合torchtext对数据进行预处理。

环境:

Windows+Anaconda
重要库版本信息
torch==1.8.2+cu102
torchaudio==0.8.2
torchdata==0.7.1
torchtext==0.9.2
torchvision==0.9.2+cu102

实现思路:

1、数据集

本次使用的是IMDB数据集,IMDB是一个含有50000条关于电影评论的数据集

数据如下:

2、数据加载与预处理

使用torchtext加载IMDB数据集,并对数据集进行划分

具体划分如下:

TEXT = data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm')
LABEL = data.LabelField(dtype=torch.float)
# Load the IMDB dataset
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)

创建一个 Field 对象,用于处理文本数据。同时使用spacy分词器对文本进行分词,由于IMDB是英文的,所以使用en_core_web_sm语言模型。

创建一个 LabelField 对象,用于处理标签数据。设置dtype 参数为 torch.float,表示标签的数据类型为浮点型。

使用 datasets.IMDB.splits 方法加载 IMDB 数据集,并将文本字段 TEXT 和标签字段 LABEL 传递给该方法。返回的 train_data 和 test_data 包含了 IMDB 数据集的训练和测试部分。

下面是train_data的输出

3、构建词汇表与加载预训练词向量

TEXT.build_vocab(train_data,max_size=25000,vectors="glove.6B.100d",unk_init=torch.Tensor.normal_)
LABEL.build_vocab(train_data)

train_data:表示使用train_data中数据构建词汇表

max_size:限制词汇表的大小为 25000

vectors="glove.6B.100d":表示使用预训练的 GloVe 词向量,其中 "glove.6B.100d" 指的是包含 100 维向量的 6B 版 GloVe。

unk_init=torch.Tensor.normal_ :表示指定未知单词(UNK)的初始化方式,这里使用正态分布进行初始化。

LABEL.build_vocab(train_data):表示对标签进行类似的操作,构建标签的词汇表

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size=BATCH_SIZE, device=device)

使用data.BucketIterator.splits 来创建数据加载器,包括训练、验证和测试集的迭代器。这将确保你能够方便地以批量的形式获取数据进行训练和评估。

4、定义神经网络

这里的网络定义比较简单,主要采用在词嵌入层(embedding)后接一个全连接层的方式完成对文本数据的分类。

具体如下:

class NetWork(nn.Module):
    def __init__(self,vocab_size,embedding_dim,output_dim,pad_idx):
        super(NetWork,self).__init__()
        self.embedding = nn.Embedding(vocab_size,embedding_dim,padding_idx=pad_idx)
        self.fc = nn.Linear(embedding_dim,output_dim)
        self.dropout = nn.Dropout(0.5)
        self.relu = nn.ReLU()     def forward(self,x):
        embedded = self.embedding(x)
        embedded = embedded.permute(1,0,2)
        pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1)
        pooled = self.relu(pooled)
        pooled = self.dropout(pooled)
       
        output = self.fc(pooled)
        return output

5、模型初始化

vocab_size = len(TEXT.vocab)
embedding_dim  = 100
output = 1
pad_idx = TEXT.vocab.stoi[TEXT.pad_token]
model = NetWork(vocab_size,embedding_dim,output,pad_idx)
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)

定义模型的超参数,包括词汇表大小(vocab_size)、词向量维度(embedding_dim)、输出维度(output,在这个任务中是1,因为是二元分类,所以使用1),以及 PAD 标记的索引(pad_idx)

之后需要将预训练的词向量加载到嵌入层的权重中。TEXT.vocab.vectors 包含了词汇表中每个单词的预训练词向量,然后通过 copy_ 方法将这些词向量复制到模型的嵌入层权重中对网络进行初始化。这样做确保了模型的初始化状态良好。

6、训练模型

 total_loss = 0
 train_acc = 0
model.train()
for batch in train_iterator:
        optimizer.zero_grad()
        preds = model(batch.text).squeeze(1)
        loss = criterion(preds,batch.label)
        total_loss += loss.item()         batch_acc = (torch.round(torch.sigmoid(preds)) == batch.label).sum().item()
        train_acc += batch_acc
       
        loss.backward()
        optimizer.step()     average_loss = total_loss / len(train_iterator)
    train_acc /= len(train_iterator.dataset)

optimizer.zero_grad():表示将模型参数的梯度清零,以准备接收新的梯度。

preds = model(batch.text).squeeze(1):表示一次前向传播的过程,由于model输出的是torch.tensor(batch_size,1)所以使用squeeze(1)给其中的1维度数据去除,以匹配标签张量的形状

criterion(preds,batch.label):定义的损失函数 criterion 计算预测值 preds 与真实标签 batch.label 之间的损失

(torch.round(torch.sigmoid(preds)) == batch.label).sum().item():

通过比较模型的预测值与真实标签,计算当前批次的准确率,并将其累加到 train_acc 中

后面的就是进行反向传播更新参数,还有就是计算loss和train_acc的值了

7、模型评估:

model.eval()
    valid_loss = 0
    valid_acc = 0
    best_valid_acc = 0
    with torch.no_grad():
        for batch in valid_iterator:
            preds = model(batch.text).squeeze(1)
            loss = criterion(preds,batch.label)
            valid_loss += loss.item()
            batch_acc = ((torch.round(torch.sigmoid(preds)) == batch.label).sum().item())
            valid_acc += batch_acc

和训练模型的类似,这里就不解释了

8、保存模型

这里一共使用了两种保存模型的方式:

torch.save(model, "model.pth")
torch.save(model.state_dict(),"model.pth")

第一种方式叫做模型的全量保存

第二种方式叫做模型的参数保存

全量保存是保存了整个模型,包括模型的结构、参数、优化器状态等信息

参数量保存是保存了模型的参数(state_dict),不包括模型的结构

9、测试模型

测试模型的基本思路:

加载训练保存的模型、对待推理的文本进行预处理、将文本数据加载给模型进行推理

加载模型:

saved_model_path = "model.pth"
saved_model = torch.load(saved_model_path)

输入文本:

input_text = "Great service! The staff was very friendly and helpful."

文本进行处理:

tokenizer = get_tokenizer("spacy", language="en_core_web_sm")
tokenized_text = tokenizer(input_text)
indexed_text = [TEXT.vocab.stoi[token] for token in tokenized_text]
tensor_text = torch.LongTensor(indexed_text).unsqueeze(1).to(device)

模型推理:

saved_model.eval()
with torch.no_grad():
output = saved_model(tensor_text).squeeze(1)
prediction = torch.round(torch.sigmoid(output)).item()
probability = torch.sigmoid(output).item()

由于笔者能力有限,所以在描述的过程中难免会有不准确的地方,还请多多包含!

关注公众号“陶陶name”获取更多NLP和CV文章以及完整代码!

NLP项目实战01--之电影评论分类的更多相关文章

  1. 【项目实战】Kaggle电影评论情感分析

    前言 这几天持续摆烂了几天,原因是我自己对于Kaggle电影评论情感分析的这个赛题敲出来的代码无论如何没办法运行,其中数据变换的维度我无法把握好,所以总是在函数中传错数据.今天痛定思痛,重新写了一遍代 ...

  2. 【SSH网上商城项目实战01】整合Struts2、Hibernate4.3和Spring4.2

    转自:https://blog.csdn.net/eson_15/article/details/51277324 今天开始做一个网上商城的项目,首先从搭建环境开始,一步步整合S2SH.这篇博文主要总 ...

  3. 电影评论分类:二分类问题(IMDB数据集)

    IMDB数据集是Keras内部集成的,初次导入需要下载一下,之后就可以直接用了. IMDB数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的250 ...

  4. JAVAEE——SSH项目实战01:SVN介绍、安装和使用方法

    1 学习目标 1.掌握svn服务端.svn客户端.svn eclipse插件安装方法 2.掌握svn的基本使用方法 2 svn介绍 2.1 项目管理中的版本控制问题 通常软件开发由多人协作开发,如果对 ...

  5. JAVAEE——SSH项目实战01:SVN介绍、eclipse插件安装和使用方法

    1 学习目标 1.掌握svn服务端.svn客户端.svn eclipse插件安装方法 2.掌握svn的基本使用方法 2 svn介绍 2.1 项目管理中的版本控制问题 通常软件开发由多人协作开发,如果对 ...

  6. 【Robot Framework 项目实战 01】使用 RequestsLibrary 进行接口测试

    写在前面 本文我们一起来学习如何使用Robot Framework 的RequestsLibrary库,涉及POST.GET接口测试,RF用例分层封装设计等内容. 接口 接口测试是我们最常见的测试类型 ...

  7. React Native商城项目实战01 - 初始化设置

    1.创建项目 $ react-native init BuyDemo 2.导入图片资源 安卓:把文件夹放到/android/app/src/main/res/目录下,如图: iOS: Xcode打开工 ...

  8. Flask项目实战:创建电影网站(3)后台的增删改查

    添加预告 根据需求数据库创建表格 需求数据库,关键字title logo # 上映预告 class Preview(db.Model): __tablename__ = "preview&q ...

  9. Flask项目实战:创建电影网站(2)

    flask网站制作后台时候常见流程总结 安利一个神神器: 百度脑图PC版 创建数据库 下面是创建User数据库,需要导入db库 #coding:utf8 from flask import Flask ...

  10. Flask项目实战:创建电影网站-创世纪(1)

    以后要养成写博客的习惯,用来做笔记.本人看的东西很多很杂,但因为工作中很少涉及,造成看了之后就忘,或者看了就看了,但是没有融入的自己的知识体系里面. 写博客一方面是做记录,一方面是给这段时间业余学习的 ...

随机推荐

  1. 《SQL与数据库基础》15. 触发器

    目录 触发器 语法 示例-insert型触发器 示例-update型触发器 示例-delete型触发器 本文以 MySQL 为例 触发器 触发器是与表有关的数据库对象,指在 insert/update ...

  2. 【译】在 Visual Studio 2022 中安全地在 HTTP 请求中使用机密

    在 Visual Studio 2022 的17.8 Preview 1版本中,我们更新了 HTTP 文件编辑器,使您能够外部化变量,从而使跨不同环境的 Web API 测试更容易.此更新还包括以安全 ...

  3. k8s证书到期处理

    证书续期提示 当执行kubectl get nodes等提示 Unable to connect to the server: x509: certificate has expired or is ...

  4. 「loj - 6179」Pyh 的求和

    link. 我们想要求出 \(\varphi(ij)=\varphi(i)\varphi(j)C\) 中的常数.先研究 \(i=p^a\),\(j=p^b\) 的情况,即 \(\varphi(p^{a ...

  5. 用Rust手把手编写一个Proxy(代理), UDP绑定篇

    用Rust手把手编写一个Proxy(代理), UDP绑定篇 项目 ++wmproxy++ gite: https://gitee.com/tickbh/wmproxy github: https:// ...

  6. 在 Net7.0 环境下使用 RestSharp 发送 Http(FromBody和FromForm)请求

    一.简介 最近,在做一个数据传输的服务,我在一个Worker Service里面需要访问 WebAPI 接口,并传输数据,也可以提交数据.由于第一次使用 RestSharp 发送请求,也遇到了很多问题 ...

  7. 从MVC到DDD,该如何下手重构?

    作者:付政委 博客:bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 大家好,我是技术UP主小傅哥.多年的 DDD 应用,使我开了技术的眼界! MVC 旧工程腐化严重,迭代成本太高 ...

  8. nacos2.X版本无法注册的几个原因以及解决方案(踩坑避雷!)

    在使用nacos+dubbo 注册服务的时候 遇到了无法注册的问题 记录一下踩的坑以及解决方案 com.alibaba.nacos.api.exception.NacosException: Requ ...

  9. nginx配置kibana访问用户名和密码认证、及无认证访问配置

    转载请注明出处: 在nginx上配置kibana页面访问时,默认是采用kibana的认证,一般直接安装kibana后,是没有用户名和密码认证的. 如果要在负载均衡上配置反向代理和用户认证,可按以下步骤 ...

  10. Django框架——模型层单表操作、模型层多表操作、模型层常用和非常用字段和参数、模型层进阶

    文章目录 1 模型层-单表操作 一 ORM简介 二 单表操作 2.1 创建表 1 创建模型 2 更多字段 3 更多参数 4 settings配置 5 增加,删除字段 2.2 添加表纪录 2.3 查询表 ...