NLP项目实战01--之电影评论分类
介绍:
欢迎来到本篇文章!在这里,我们将探讨一个常见而重要的自然语言处理任务——文本分类。具体而言,我们将关注情感分析任务,即通过分析电影评论的情感来判断评论是正面的、负面的。
展示:
训练展示如下:


实际使用如下:

实现方式:
选择PyTorch作为深度学习框架,使用电影评论IMDB数据集,并结合torchtext对数据进行预处理。
环境:
Windows+Anaconda
重要库版本信息
torch==1.8.2+cu102
torchaudio==0.8.2
torchdata==0.7.1
torchtext==0.9.2
torchvision==0.9.2+cu102
实现思路:
1、数据集
本次使用的是IMDB数据集,IMDB是一个含有50000条关于电影评论的数据集
数据如下:


2、数据加载与预处理
使用torchtext加载IMDB数据集,并对数据集进行划分
具体划分如下:
TEXT = data.Field(tokenize='spacy', tokenizer_language='en_core_web_sm')
LABEL = data.LabelField(dtype=torch.float)
# Load the IMDB dataset
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
创建一个 Field 对象,用于处理文本数据。同时使用spacy分词器对文本进行分词,由于IMDB是英文的,所以使用en_core_web_sm语言模型。
创建一个 LabelField 对象,用于处理标签数据。设置dtype 参数为 torch.float,表示标签的数据类型为浮点型。
使用 datasets.IMDB.splits 方法加载 IMDB 数据集,并将文本字段 TEXT 和标签字段 LABEL 传递给该方法。返回的 train_data 和 test_data 包含了 IMDB 数据集的训练和测试部分。
下面是train_data的输出

3、构建词汇表与加载预训练词向量
TEXT.build_vocab(train_data,max_size=25000,vectors="glove.6B.100d",unk_init=torch.Tensor.normal_)
LABEL.build_vocab(train_data)
train_data:表示使用train_data中数据构建词汇表
max_size:限制词汇表的大小为 25000
vectors="glove.6B.100d":表示使用预训练的 GloVe 词向量,其中 "glove.6B.100d" 指的是包含 100 维向量的 6B 版 GloVe。
unk_init=torch.Tensor.normal_ :表示指定未知单词(UNK)的初始化方式,这里使用正态分布进行初始化。
LABEL.build_vocab(train_data):表示对标签进行类似的操作,构建标签的词汇表
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size=BATCH_SIZE, device=device)
使用data.BucketIterator.splits 来创建数据加载器,包括训练、验证和测试集的迭代器。这将确保你能够方便地以批量的形式获取数据进行训练和评估。
4、定义神经网络
这里的网络定义比较简单,主要采用在词嵌入层(embedding)后接一个全连接层的方式完成对文本数据的分类。
具体如下:
class NetWork(nn.Module):
def __init__(self,vocab_size,embedding_dim,output_dim,pad_idx):
super(NetWork,self).__init__()
self.embedding = nn.Embedding(vocab_size,embedding_dim,padding_idx=pad_idx)
self.fc = nn.Linear(embedding_dim,output_dim)
self.dropout = nn.Dropout(0.5)
self.relu = nn.ReLU()
def forward(self,x):
embedded = self.embedding(x)
embedded = embedded.permute(1,0,2)
pooled = F.avg_pool2d(embedded, (embedded.shape[1], 1)).squeeze(1)
pooled = self.relu(pooled)
pooled = self.dropout(pooled)
output = self.fc(pooled)
return output
5、模型初始化
vocab_size = len(TEXT.vocab)
embedding_dim = 100
output = 1
pad_idx = TEXT.vocab.stoi[TEXT.pad_token]
model = NetWork(vocab_size,embedding_dim,output,pad_idx)
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
定义模型的超参数,包括词汇表大小(vocab_size)、词向量维度(embedding_dim)、输出维度(output,在这个任务中是1,因为是二元分类,所以使用1),以及 PAD 标记的索引(pad_idx)
之后需要将预训练的词向量加载到嵌入层的权重中。TEXT.vocab.vectors 包含了词汇表中每个单词的预训练词向量,然后通过 copy_ 方法将这些词向量复制到模型的嵌入层权重中对网络进行初始化。这样做确保了模型的初始化状态良好。
6、训练模型
total_loss = 0
train_acc = 0
model.train()
for batch in train_iterator:
optimizer.zero_grad()
preds = model(batch.text).squeeze(1)
loss = criterion(preds,batch.label)
total_loss += loss.item()
batch_acc = (torch.round(torch.sigmoid(preds)) == batch.label).sum().item()
train_acc += batch_acc
loss.backward()
optimizer.step()
average_loss = total_loss / len(train_iterator)
train_acc /= len(train_iterator.dataset)
optimizer.zero_grad():表示将模型参数的梯度清零,以准备接收新的梯度。
preds = model(batch.text).squeeze(1):表示一次前向传播的过程,由于model输出的是torch.tensor(batch_size,1)所以使用squeeze(1)给其中的1维度数据去除,以匹配标签张量的形状
criterion(preds,batch.label):定义的损失函数 criterion 计算预测值 preds 与真实标签 batch.label 之间的损失
(torch.round(torch.sigmoid(preds)) == batch.label).sum().item():
通过比较模型的预测值与真实标签,计算当前批次的准确率,并将其累加到 train_acc 中
后面的就是进行反向传播更新参数,还有就是计算loss和train_acc的值了
7、模型评估:
model.eval()
valid_loss = 0
valid_acc = 0
best_valid_acc = 0
with torch.no_grad():
for batch in valid_iterator:
preds = model(batch.text).squeeze(1)
loss = criterion(preds,batch.label)
valid_loss += loss.item()
batch_acc = ((torch.round(torch.sigmoid(preds)) == batch.label).sum().item())
valid_acc += batch_acc
和训练模型的类似,这里就不解释了
8、保存模型
这里一共使用了两种保存模型的方式:
torch.save(model, "model.pth")
torch.save(model.state_dict(),"model.pth")
第一种方式叫做模型的全量保存
第二种方式叫做模型的参数保存
全量保存是保存了整个模型,包括模型的结构、参数、优化器状态等信息
参数量保存是保存了模型的参数(state_dict),不包括模型的结构
9、测试模型
测试模型的基本思路:
加载训练保存的模型、对待推理的文本进行预处理、将文本数据加载给模型进行推理
加载模型:
saved_model_path = "model.pth"
saved_model = torch.load(saved_model_path)
输入文本:
input_text = "Great service! The staff was very friendly and helpful."
文本进行处理:
tokenizer = get_tokenizer("spacy", language="en_core_web_sm")
tokenized_text = tokenizer(input_text)
indexed_text = [TEXT.vocab.stoi[token] for token in tokenized_text]
tensor_text = torch.LongTensor(indexed_text).unsqueeze(1).to(device)
模型推理:
saved_model.eval()
with torch.no_grad():
output = saved_model(tensor_text).squeeze(1)
prediction = torch.round(torch.sigmoid(output)).item()
probability = torch.sigmoid(output).item()
由于笔者能力有限,所以在描述的过程中难免会有不准确的地方,还请多多包含!
关注公众号“陶陶name”获取更多NLP和CV文章以及完整代码!
NLP项目实战01--之电影评论分类的更多相关文章
- 【项目实战】Kaggle电影评论情感分析
前言 这几天持续摆烂了几天,原因是我自己对于Kaggle电影评论情感分析的这个赛题敲出来的代码无论如何没办法运行,其中数据变换的维度我无法把握好,所以总是在函数中传错数据.今天痛定思痛,重新写了一遍代 ...
- 【SSH网上商城项目实战01】整合Struts2、Hibernate4.3和Spring4.2
转自:https://blog.csdn.net/eson_15/article/details/51277324 今天开始做一个网上商城的项目,首先从搭建环境开始,一步步整合S2SH.这篇博文主要总 ...
- 电影评论分类:二分类问题(IMDB数据集)
IMDB数据集是Keras内部集成的,初次导入需要下载一下,之后就可以直接用了. IMDB数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的250 ...
- JAVAEE——SSH项目实战01:SVN介绍、安装和使用方法
1 学习目标 1.掌握svn服务端.svn客户端.svn eclipse插件安装方法 2.掌握svn的基本使用方法 2 svn介绍 2.1 项目管理中的版本控制问题 通常软件开发由多人协作开发,如果对 ...
- JAVAEE——SSH项目实战01:SVN介绍、eclipse插件安装和使用方法
1 学习目标 1.掌握svn服务端.svn客户端.svn eclipse插件安装方法 2.掌握svn的基本使用方法 2 svn介绍 2.1 项目管理中的版本控制问题 通常软件开发由多人协作开发,如果对 ...
- 【Robot Framework 项目实战 01】使用 RequestsLibrary 进行接口测试
写在前面 本文我们一起来学习如何使用Robot Framework 的RequestsLibrary库,涉及POST.GET接口测试,RF用例分层封装设计等内容. 接口 接口测试是我们最常见的测试类型 ...
- React Native商城项目实战01 - 初始化设置
1.创建项目 $ react-native init BuyDemo 2.导入图片资源 安卓:把文件夹放到/android/app/src/main/res/目录下,如图: iOS: Xcode打开工 ...
- Flask项目实战:创建电影网站(3)后台的增删改查
添加预告 根据需求数据库创建表格 需求数据库,关键字title logo # 上映预告 class Preview(db.Model): __tablename__ = "preview&q ...
- Flask项目实战:创建电影网站(2)
flask网站制作后台时候常见流程总结 安利一个神神器: 百度脑图PC版 创建数据库 下面是创建User数据库,需要导入db库 #coding:utf8 from flask import Flask ...
- Flask项目实战:创建电影网站-创世纪(1)
以后要养成写博客的习惯,用来做笔记.本人看的东西很多很杂,但因为工作中很少涉及,造成看了之后就忘,或者看了就看了,但是没有融入的自己的知识体系里面. 写博客一方面是做记录,一方面是给这段时间业余学习的 ...
随机推荐
- 原来你是这样的JAVA--目录
.NET程序员转Java过程中遇到的一些经验分享,陆续更新中. 原来你是这样的Java[01]--基础一瞥 原来你是这样的Java[02]-包.传参.构造器 原来你是这样的Java[03]-继承.多态 ...
- sqlite/mysql 省市县三级联动
这个是sqlite的, 改下表结构, 就可以给mysql用了 CREATE TABLE ProvinceCityZone ( _id INTEGER PRIMARY KEY AUTOINCREMENT ...
- Vue3搭建后台管理系统模板
搭建后台管理系统模板 2.1项目初始化 今天来带大家从0开始搭建一个vue3版本的后台管理系统.一个项目要有统一的规范,需要使用eslint+stylelint+prettier来对我们的代码质量做检 ...
- 深入解析 C++ 中的 ostringstream、istringstream 和 stringstream 用法
引言: 在 C++ 中,ostringstream.istringstream 和 stringstream 是三个非常有用的字符串流类,它们允许我们以流的方式处理字符串数据.本文将深入探讨这三个类的 ...
- 如何查询4GL程序中创建的临时表中的数据
前提:将dba_segments这个表的select权限授权给各个营运中心(即数据库用户) ①.用sys账号以dba的权限登录数据库 <topprod:/u1/topprod/tiptop> ...
- 虹科案例|Redis企业版数据库:金融行业客户案例解读
传统银行无法提供无缝的全渠道客户体验.无法实时检测欺诈.无法获得业务洞察力.用户体验感较差.品牌声誉受损和业务损失?虹科提供的Redis企业版数据库具有低延迟.高吞吐和可用性性能,实施Redis企业版 ...
- Util应用框架 UI 开发快速入门
本文是Util应用框架 Angular UI 开发快速入门教程. Util前端技术概述 Util 应用框架目前仅支持用于开发管理后台的 UI. 本文介绍了 Util UI 的技术特点和功能支持. UI ...
- 机器学习实战1-kNN最近邻算法
目录 机器学习基础 机器学习的关键术语 k-近邻算法(KNN) 准备:使用python导入数据 实施kNN分类算法 示例:使用kNN改进约会网站的配对效果 准备数据:从文本文件中解析数据 分析数据 准 ...
- HTTP工具类文件request.js的完善和优化
request.js 在现代前端项目中通常被称为一个HTTP请求工具或HTTP工具类文件.它的主要作用是对项目中用到的HTTP请求进行统一的配置和处理. 应用示例: // 查询用户列表 export ...
- dicker 常用命令(简洁版)