文心一言 VS 讯飞星火 VS chatgpt (77)-- 算法导论7.3 2题
二、如果用go语言,在 RANDOMIZED-QUICKSORT 的运行过程中,在最坏情况下,随机数生成器 RANDOM 被调用了多少次?在最好情况下呢?以θ符号的形式给出你的答案?
文心一言:
在 RANDOMIZED-QUICKSORT 的运行过程中,最坏情况下,随机数生成器 RANDOM 的调用次数为 O(n)。这是因为在最坏情况下,每次分区操作都会将数组分成大小相等的两部分,因此每次都需要从剩下的 n-1 个元素中随机选择一个元素作为主元。这样,每次分区操作都需要调用 RANDOM 函数,总共需要进行 n 次分区操作,因此 RANDOM 的调用次数为 O(n)。
在最好情况下,RANDOM 的调用次数为 O(log n)。这是因为在最好情况下,每次分区操作都会将数组分成大小为 n/2 和 n/2-1 的两部分,这样每次只需要从其中一部分中随机选择一个元素作为主元即可。这样,每次分区操作只需要调用 RANDOM 函数一次,总共需要进行 log(n) 次分区操作,因此 RANDOM 的调用次数为 O(log n)。

讯飞星火:
在最坏情况下,随机数生成器 RANDOM 被调用了 (n-1)*log2(n) + O(n) 次。在最好情况下,它被调用了 O(n) 次。
以下是用 Go 语言实现的代码:
package main
import (
"fmt"
"math"
)
func partition(arr []int, low, high int) int {
pivot := arr[high]
i := low - 1
for j := low; j < high; j++ {
if arr[j] <= pivot {
i++
arr[i], arr[j] = arr[j], arr[i]
}
}
arr[i+1], arr[high] = arr[high], arr[i+1]
return i + 1
}
func quickSort(arr []int, low, high int) {
if low < high {
pi := partition(arr, low, high)
quickSort(arr, low, pi-1)
quickSort(arr, pi+1, high)
}
}
func randomizedQuickSort(arr []int, n int) {
randomizedPartition(arr, 0, n-1)
quickSort(arr, 0, n-1)
}
func randomizedPartition(arr []int, low, high int) {
rand.Seed(time.Now().UnixNano())
pivotIndex := rand.Intn(high-low+1) + low
arr[pivotIndex], arr[high] = arr[high], arr[pivotIndex]
pivotIndex = partition(arr, low, high)
arr[pivotIndex], arr[high] = arr[high], arr[pivotIndex]
}
func main() {
arr := []int{3, 8, 2, 5, 1, 4, 7, 6}
n := len(arr)
randomizedQuickSort(arr, n)
fmt.Println("Sorted array:", arr)
}
这段代码实现了随机化快速排序算法,其中 randomizedPartition 函数用于随机选择枢轴元素,并调整数组以使其有序。在最坏情况下,随机数生成器 RANDOM 被调用了 (n-1)*log2(n) + O(n) 次,而在最好情况下,它被调用了 O(n) 次。


360智脑:
在 RANDOMIZED-QUICKSORT 中,最坏情况下,每次递归调用 quicksort() 函数时都需要调用 RANDOM 生成一个随机数。因此,在最坏情况下,random() 被调用了 n! 次,其中 n 是待排序数组的大小。
以θ符号表示,最坏情况下,random() 被调用的次数为:θ(n!)。
在最好情况下,每次递归调用 quicksort() 函数时会使用数组中的一个元素作为随机数,此时 random() 被调用的次数为 n 次。
以θ符号表示,最好情况下,random() 被调用的次数为:θ(n^2)。

chatglm:
在最坏情况下,随机数生成器 RANDOM 可能会被调用 n 次,其中 n 是待排序数组的长度。这是因为在随机选择基准值时,有可能每次选择的基准值都不同,因此需要多次调用 RANDOM 函数来生成随机数。
在最好情况下,随机数生成器 RANDOM 可能会被调用 1 次或者 2 次。这是因为在随机选择基准值时,有可能第一次选择的基准值就是排序数组中的最小值或最大值,这样就不需要再次调用 RANDOM 函数了。如果第一次选择的基准值不是最小值或最大值,那么需要再次调用 RANDOM 函数来生成一个新的随机数。
因此,最坏情况下,随机数生成器 RANDOM 可能会被调用 n 次,最好情况下可能被调用 1 或 2 次。答案可以表示为:
最坏情况:O(n)
最好情况:O(1) 或 O(2)

通义千问:
在最坏情况下,随机数生成器RANDOM被调用了nlogn次,其中n为待排序数组的大小。在最好情况下,随机数生成器RANDOM被调用了O(1)次。
这是因为在最坏情况下,每次递归调用QUICKSORT都会将数组分成两份,其中一份的大小为n/2,另一份的大小为1。由于我们将较小的一份作为基准值,所以我们需要对较大的一份进行递归调用。这个过程会一直持续到每个子数组的大小为1,此时我们就可以直接将它们按照随机数排序。因此,总共需要进行nlogn次递归调用。
在最好情况下,每次递归调用QUICKSORT都会将数组分成两份,其中一份的大小为1,另一份的大小为n-1。由于我们将较大的一份作为基准值,所以我们只需要对较小的一份进行递归调用。由于每个子数组的大小为1,所以我们只需要对它们进行一次排序,即可得到有序数组。因此,总共需要进行O(1)次递归调用。

天工:
在最坏情况下,随机数生成器 RANDOM 会被调用 $O(\log n)$ 次,其中 $n$ 是要排序的元素数量。
在最好情况下,随机数生成器 RANDOM 会被调用 $O(1)$ 次。
因此,随机数生成器 RANDOM 在最坏情况下的平均运行时间复杂度为 $O(\log n)$,在最好情况下的平均运行时间复杂度为 $O(1)$。

chatgpt:
在随机化快速排序(RANDOMIZED-QUICKSORT)中,随机数生成器 RANDOM 在每次选择划分元素时被调用。
在最坏情况下,随机数生成器 RANDOM 被调用的次数等于递归调用的次数。当划分中选择的划分元素总是使得数组分割得非常不均衡时,最坏情况发生。
对于长度为 n 的数组,在最坏情况下,递归调用 RANDOM 的次数可以表示为递归树的高度 h,它是数组长度的对数级别。
因此,在最坏情况下,RANDOM 被调用的次数为 Θ(log n)。
在最好情况下,随机数生成器 RANDOM 仅被调用一次。当每次都能选择一个恰好平衡分割的划分元素时,最好情况发生。
因此,在最好情况下,RANDOM 被调用的次数为 Θ(1)。
综上所述:
在最坏情况下,随机数生成器 RANDOM 被调用 Θ(log n) 次。
在最好情况下,随机数生成器 RANDOM 被调用 Θ(1) 次。

总结

文心一言 VS 讯飞星火 VS chatgpt (77)-- 算法导论7.3 2题的更多相关文章
- 【对比】文心一言对飚ChatGPT实操对比体验
前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...
- 【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...
- 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入
"文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...
- 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果
百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 基于讯飞语音API应用开发之——离线词典构建
最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...
- android用讯飞实现TTS语音合成 实现中文版
Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...
- android讯飞语音开发常遇到的问题
场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...
- 初探机器学习之使用讯飞TTS服务实现在线语音合成
最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...
随机推荐
- 2022-05-14:语法补全功能,比如“as soon as possible“, 当我们识别到“as soon as“时, 基本即可判定用户需要键入“possible“。 设计一个统计词频的模型,
2022-05-14:语法补全功能,比如"as soon as possible", 当我们识别到"as soon as"时, 基本即可判定用户需要键入&quo ...
- 2022-05-05:给定一个正数num,要返回一个大于num的数,并且每一位和相邻位的数字不能相等. 返回达标的数字中,最小的那个。 来自微软。
2022-05-05:给定一个正数num,要返回一个大于num的数,并且每一位和相邻位的数字不能相等. 返回达标的数字中,最小的那个. 来自微软. 答案2022-05-05: 从左往右看,是否有相邻两 ...
- 6R机械臂运动规划及仿真
博客地址:https://www.cnblogs.com/zylyehuo/ 参考链接 Moveit!机械臂控制 文件下载-古月ROS教程视频配套资料 解决Could not find a packa ...
- Netty自定义协议要素
魔数:用来判断是否是无效数据包 协议版本号:可以支持协议的升级 序列化算法:消息正文使用哪种序列化方式,可以扩展.例如:protobuf,json,hessian等 指令类型:跟业务相关,例如:登录, ...
- MMCM/PLL VCO
输入输出时钟频率,input 322.265625Mhz, output 312.5Mhz 对于使用MMCM与PLL的不同情况,虽然输入输出频率是一样的,但是,分/倍频系数是不同的,不能使用同一套参数 ...
- Netty实战(三)
目录 一.Channel.EventLoop 和 ChannelFuture 1.1 Channel 接口 1.2 EventLoop 接口 1.3 ChannelFuture 接口 二.Channe ...
- Bio+IT 生信科技爱好者知识库
欢迎来到 Bio+IT 生信科技爱好者知识库! 关于我们 "BioIT爱好者" 是一个专注于生物信息学和 IT 互联网技术的知识库平台,是一个集合了 Bio+IT 相关的数据分析. ...
- selenium元素定位---ElementClickInterceptedException(元素点击交互异常)解决方法
1.异常原因 在编写ui自动化时,执行报错元素无法点击:ElementClickInterceptedException 具体报错:selenium.common.exceptions.Element ...
- 记一次 .NET 某医院预约平台 非托管泄露分析
一:背景 1. 讲故事 前几天有位朋友找到我,说他的程序有内存泄露,让我帮忙排查一下,截图如下: 说实话看到 32bit, 1.5G 这些关键词之后,职业敏感告诉我,他这个可能是虚拟地址紧张所致,不管 ...
- OpenCV计算机视觉学习(14)——浅谈常见图像后缀(png, jpg, bmp)的区别(opencv读取语义分割mask的坑)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 本来 ...