【LLM训练系列】从零开始训练大模型之Phi2-mini-Chinese项目解读
一、前言
本文主要是在复现和实践Phi2-mini-Chinese后,简要分析下Phi2-mini-Chinese这个项目,做一个学习实战总结。
原文发布于知乎:https://zhuanlan.zhihu.com/p/718307193,转载请注明出数。
Phi2-mini-Chinese简介
Phi2-Chinese-0.2B 从0开始训练自己的Phi2中文小模型,支持接入langchain加载本地知识库做检索增强生成RAG。Training your own Phi2 small chat model from scratch.
项目开始时期:2023年12月22日
地址:https://github.com/charent/Phi2-mini-Chinese
流程步骤
- 数据处理
- Tokenizer训练
- 预训练
- SFT
- DPO
数据处理的步骤略去。一般是使用开源数据集。
Tokenizer训练

就是使用tokenizers库用BPE训练,没啥好说的。
预训练代码
import os, platform, time
from typing import Optional
import numpy as np
import pandas as pd
from dataclasses import dataclass,field
from datasets import load_dataset, Dataset
import torch
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers import PreTrainedTokenizerFast, DataCollatorForLanguageModeling, PhiConfig, PhiForCausalLM, Trainer, TrainingArguments, TrainerCallback
# 预训练数据(单纯的文本数据)
TRAIN_FILES = ['./data/wiki_chunk_320_2.2M.parquet',]
EVAL_FILE = './data/pretrain_eval_400_1w.parquet'
@dataclass
class PretrainArguments:
tokenizer_dir: str = './model_save/tokenizer/'
model_save_dir: str = './model_save/pre/'
logs_dir: str = './logs/'
train_files: list[str] = field(default_factory=lambda: TRAIN_FILES)
eval_file: str = EVAL_FILE
max_seq_len: int = 512
attn_implementation: str = 'eager' if platform.system() == 'Windows' else attn_implementation
pretrain_args = PretrainArguments()
# 加载训练好的tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(pretrain_args.tokenizer_dir)
# 词表大小修正
vocab_size = len(tokenizer)
if vocab_size % 64 != 0:
vocab_size = (vocab_size // 64 + 1) * 64
# 如果词表大小小于 65535 用uint16存储,节省磁盘空间,否则用uint32存储
map_dtype = np.uint16 if vocab_size < 65535 else np.uint32
def token_to_id(samples: dict[str, list]) -> dict:
batch_txt = samples['text']
outputs = tokenizer(batch_txt, truncation=False, padding=False, return_attention_mask=False)
input_ids = [np.array(item, dtype=map_dtype) for item in outputs["input_ids"]]
return {"input_ids": input_ids}
# 加载数据集
def get_maped_dataset(files: str|list[str]) -> Dataset:
dataset = load_dataset(path='parquet', data_files=files, split='train', cache_dir='.cache')
maped_dataset = dataset.map(token_to_id, batched=True, batch_size=1_0000, remove_columns=dataset.column_names)
return maped_dataset
train_dataset = get_maped_dataset(pretrain_args.train_files)
eval_dataset = get_maped_dataset(pretrain_args.eval_file)
# 定义data_collator。`mlm=False`表示要训练CLM模型,`mlm=True`表示要训练MLM模型
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
phi_config = PhiConfig(
vocab_size=vocab_size,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
hidden_size=960,
num_attention_heads=16,
num_hidden_layers=24,
max_position_embeddings=512,
intermediate_size=4096,
attn_implementation=pretrain_args.attn_implementation,
)
model = PhiForCausalLM(phi_config)
# 定义训练参数
my_trainer_callback = MyTrainerCallback() # cuda cache回调函数
args = TrainingArguments(
output_dir=pretrain_args.model_save_dir, per_device_train_batch_size=4,
gradient_accumulation_steps=32, num_train_epochs=4, weight_decay=0.1,
warmup_steps=1000, learning_rate=5e-4, evaluation_strategy='steps',
eval_steps=2000, save_steps=2000, save_strategy='steps', save_total_limit=3,
report_to='tensorboard', optim="adafactor", bf16=True, logging_steps=5,
log_level='info', logging_first_step=True,
)
trainer = Trainer(model=model, tokenizer=tokenizer,args=args,
data_collator=data_collator, train_dataset=train_dataset,
eval_dataset=eval_dataset, callbacks=[my_trainer_callback],
)
trainer.train()
trainer.save_model(pretrain_args.model_save_dir)
这个代码和只要是使用Transformers库的Trainer基本差别不大,大相径庭。
主要是,tokenizer和CausalLM模型的差别。
PhiConfig, PhiForCausalLM 变成:
from transformers import LlamaConfig as PhiConfig
from transformers import LlamaForCausalLM as PhiForCausalLM
或:
from transformers import Qwen2Config as PhiConfig
from transformers import Qwen2ForCausalLM as PhiForCausalLM
就很随意的变成了其他模型的简单预训练了 。
关于训练数据构造,其中,DataCollatorForLanguageModeling:



注: get_maped_datasetget_maped_dataset的load_dataset没有加num_proc,导致加载速度慢,加以设置为核心数)
这部分代码和我之前写一个篇基于transformers库训练GPT2大差不差:
https://zhuanlan.zhihu.com/p/685851459
注: get_maped_datasetget_maped_dataset的load_dataset没有加num_proc,导致加载速度慢,加以设置为核心数)
SFT代码
基本和预训练一致,唯一的不同就是,设置了output的标签
import time
import pandas as pd
import numpy as np
import torch
from datasets import load_dataset
from transformers import PreTrainedTokenizerFast, PhiForCausalLM, TrainingArguments, Trainer, TrainerCallback
from trl import DataCollatorForCompletionOnlyLM
# 1. 定义训练数据,tokenizer,预训练模型的路径及最大长度
sft_file = './data/sft_train_data.parquet'
tokenizer_dir = './model_save/tokenizer/'
sft_from_checkpoint_file = './model_save/pre/'
model_save_dir = './model_save/sft/'
max_seq_len = 512
# 2. 加载训练数据集
dataset = load_dataset(path='parquet', data_files=sft_file, split='train', cache_dir='.cache')
tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)
print(f"vicab size: {len(tokenizer)}")
# ## 2.1 定义sft data_collator的指令字符
# 也可以手动将`instruction_template_ids`和`response_template_ids`添加到input_ids中的,因为如果是byte level tokenizer可能将`:`和后面的字符合并,导致找不到`instruction_template_ids`和`response_template_ids`。
# 也可以像下文一样通过在`'#'`和`':'`前后手动加`'\n'`解决
# %%
instruction_template = "##提问:"
response_template = "##回答:"
map_dtype = np.uint16 if len(tokenizer) < 65535 else np.uint32
def batched_formatting_prompts_func(example: list[dict]) -> list[str]:
batch_txt = []
for i in range(len(example['instruction'])):
text = f"{instruction_template}\n{example['instruction'][i]}\n{response_template}\n{example['output'][i]}[EOS]"
batch_txt.append(text)
outputs = tokenizer(batch_txt, return_attention_mask=False)
input_ids = [np.array(item, dtype=map_dtype) for item in outputs["input_ids"]]
return {"input_ids": input_ids}
dataset = dataset.map(batched_formatting_prompts_func, batched=True,
remove_columns=dataset.column_names).shuffle(23333)
# 2.2 定义data_collator
#
data_collator = DataCollatorForCompletionOnlyLM(
instruction_template=instruction_template,
response_template=response_template,
tokenizer=tokenizer,
mlm=False
)
empty_cuda_cahce = EmptyCudaCacheCallback() ## 定义训练过程中的回调函数
my_datasets = dataset.train_test_split(test_size=4096)
# 5. 定义训练参数
model = PhiForCausalLM.from_pretrained(sft_from_checkpoint_file)
args = TrainingArguments(
output_dir=model_save_dir, per_device_train_batch_size=8, gradient_accumulation_steps=8,
num_train_epochs=3, weight_decay=0.1, warmup_steps=1000, learning_rate=5e-5,
evaluation_strategy='steps', eval_steps=2000, save_steps=2000, save_total_limit=3,
report_to='tensorboard', optim="adafactor", bf16=True, logging_steps=10,
log_level='info', logging_first_step=True, group_by_length=True,
)
trainer = Trainer(
model=model, tokenizer=tokenizer, args=args,
data_collator=data_collator,
train_dataset=my_datasets['train'],
eval_dataset=my_datasets['test'],
callbacks=[empty_cuda_cahce],
)
trainer.train()
trainer.save_model(model_save_dir)
总之,虽然都是一套代码,但实际上一切的细节隐藏在:
DataCollatorForLanguageModeling、Trainer、tokenizer和CausalLM的实现中。
更底层的实在pytorch的实现中,不过一般不涉及框架内部的实现分析。
和huggingface的trl库的SFT example,唯一区别就是还是用的Trainer
https://huggingface.co/docs/trl/main/en/sft_trainer#train-on-completions-only
其中,DataCollatorForCompletionOnlyLM会为指令微调式的补全式训练,自动构造样本:
You can use the DataCollatorForCompletionOnlyLM to train your model on the generated prompts only. Note that this works only in the case when packing=False.
对于指令微调式的instruction data, 实例化一个datacollator,传入一个输response的template 和tokenizer。
内部可以进行response部分的token ids的拆分,并指定为预测标签。
下面是HuggingFace官方的使用DataCollatorForCompletionOnlyLM+FTTrainer,进行指令微调的例子:
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM
dataset = load_dataset("timdettmers/openassistant-guanaco", split="train")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
instruction_template = "### Human:"
response_template = "### Assistant:"
collator = DataCollatorForCompletionOnlyLM(instruction_template=instruction_template, response_template=response_template, tokenizer=tokenizer, mlm=False)
trainer = SFTTrainer(
model,
args=SFTConfig(
output_dir="/tmp",
dataset_text_field = "text",
),
train_dataset=dataset,
data_collator=collator,
)
trainer.train()
关于Trainer and SFTTrainer的区别,感觉区别不大
https://medium.com/@sujathamudadla1213/difference-between-trainer-class-and-sfttrainer-supervised-fine-tuning-trainer-in-hugging-face-d295344d73f7

DPO代码
import time
import pandas as pd
from typing import List, Optional, Dict
from dataclasses import dataclass, field
import torch
from trl import DPOTrainer
from transformers import PreTrainedTokenizerFast, PhiForCausalLM, TrainingArguments, TrainerCallback
from datasets import load_dataset
# 1. 定义sft模型路径及dpo数据
dpo_file = './data/dpo_train_data.json'
tokenizer_dir = './model_save/tokenizer/'
sft_from_checkpoint_file = './model_save/sft/'
model_save_dir = './model_save/dpo/'
max_seq_len = 320
# 2. 加载数据集
# 数据集token格式化
# DPO数据格式:[prompt模型输入,chosen正例, rejected负例]
# 将dpo数据集三列数据添加上`eos`token,`bos`可加可不加
def split_prompt_and_responses(samples: dict[str, str]) -> Dict[str, str]:
prompts, chosens, rejects = [], [], []
batch_size = len(samples['prompt'])
for i in range(batch_size):
# add an eos token for signal that end of sentence, using in generate.
prompts.append(f"[BOS]{samples['prompt'][i]}[EOS]")
chosens.append(f"[BOS]{samples['chosen'][i]}[EOS]")
rejects.append(f"[BOS]{samples['rejected'][i]}[EOS]")
return {'prompt': prompts, 'chosen': chosens, 'rejected':rejects,}
tokenizer = PreTrainedTokenizerFast.from_pretrained(tokenizer_dir)
dataset = load_dataset(path='json', data_files=dpo_file, split='train', cache_dir='.cache')
dataset = dataset.map(split_prompt_and_responses, batched=True,).shuffle(2333)
# 4. 加载模型
# `model`和`model_ref`开始时是同一个模型,只训练`model`的参数,`model_ref`参数保存不变
model = PhiForCausalLM.from_pretrained(sft_from_checkpoint_file)
model_ref = PhiForCausalLM.from_pretrained(sft_from_checkpoint_file)
# 5. 定义训练中的回调函数
# 清空cuda缓存,dpo要加载两个模型,显存占用较大,这能有效缓解低显存机器显存缓慢增长的问题
class EmptyCudaCacheCallback(TrainerCallback):
log_cnt = 0
def on_log(self, args, state, control, logs=None, **kwargs):
self.log_cnt += 1
if self.log_cnt % 5 == 0:
torch.cuda.empty_cache()
empty_cuda_cahce = EmptyCudaCacheCallback()
# 训练参数
args = TrainingArguments(
output_dir=model_save_dir, per_device_train_batch_size=2, gradient_accumulation_steps=16,
num_train_epochs=4, weight_decay=0.1, warmup_steps=1000, learning_rate=2e-5, save_steps=2000, save_total_limit=3, report_to='tensorboard', bf16=True, logging_steps=10, log_level='info',
logging_first_step=True, optim="adafactor", remove_unused_columns=False, group_by_length=True,
)
trainer = DPOTrainer(
model, model_ref, args=args, beta=0.1,
train_dataset=dataset,tokenizer=tokenizer, callbacks=[empty_cuda_cahce],
max_length=max_seq_len * 2 + 16, # 16 for eos bos
max_prompt_length=max_seq_len,
)
trainer.train()
trainer.save_model(model_save_dir)
碎碎念
深入学习
使用transformers的Traniner以及trl库的训练代码基本上都差不多,因为transformers和trl都封装地很好了。
如何要略微深入细节,建议阅读或debug如下仓库。这两个仓库都是基于pytorch实现的:
- https://github.com/DLLXW/baby-llama2-chinese/tree/main
- https://github.com/jzhang38/TinyLlama/blob/main/pretrain/tinyllama.py
改进
这个项目就是基于Phi2-mini-Chinese,主要就是把phi2换成了qwen,然后直接使用qwen的tokenizer
https://github.com/jiahe7ay/MINI_LLM/
我这边尝试使用了transformers库把qwen2的抽出来,用于训练。
其实,和直接用transformers的Qwen2LMModel没有区别。
感兴趣的可以替换任意主流模型,修改配置,其实也大差不差。
这些代码主要是用于学习用途。只要有点时间,有点卡,不费什么力就可以弄点数据复现走完整个流程。
不过,要训练出的效果还可以的小规模LLM也并不简单。
如果您需要引用本文,请参考:
LeonYi. (Aug. 25, 2024). 《【LLM训练系列】从零开始训练大模型之Phi2-mini-Chinese项目解读》.
@online{title={【LLM训练系列】从零开始训练大模型之Phi2-mini-Chinese项目解读},
author={LeonYi},
year={2024},
month={Sep},
url={https://www.cnblogs.com/justLittleStar/p/18379771},
}
【LLM训练系列】从零开始训练大模型之Phi2-mini-Chinese项目解读的更多相关文章
- DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...
- 一个使用fasttext训练的新闻文本分类器/模型
fastext是什么? Facebook AI Research Lab 发布的一个用于快速进行文本分类和单词表示的库.优点是很快,可以进行分钟级训练,这意味着你可以在几分钟时间内就训练好一个分类模型 ...
- 云原生的弹性 AI 训练系列之一:基于 AllReduce 的弹性分布式训练实践
引言 随着模型规模和数据量的不断增大,分布式训练已经成为了工业界主流的 AI 模型训练方式.基于 Kubernetes 的 Kubeflow 项目,能够很好地承载分布式训练的工作负载,业已成为了云原生 ...
- 云原生的弹性 AI 训练系列之二:PyTorch 1.9.0 弹性分布式训练的设计与实现
背景 机器学习工作负载与传统的工作负载相比,一个比较显著的特点是对 GPU 的需求旺盛.在之前的文章中介绍过(https://mp.weixin.qq.com/s/Nasm-cXLtJObjLwLQH ...
- PyTorch如何加速数据并行训练?分布式秘籍大揭秘
PyTorch 在学术圈里已经成为最为流行的深度学习框架,如何在使用 PyTorch 时实现高效的并行化? 在芯片性能提升有限的今天,分布式训练成为了应对超大规模数据集和模型的主要方法.本文将向你介绍 ...
- Optimum + ONNX Runtime: 更容易、更快地训练你的 Hugging Face 模型
介绍 基于语言.视觉和语音的 Transformer 模型越来越大,以支持终端用户复杂的多模态用例.增加模型大小直接影响训练这些模型所需的资源,并随着模型大小的增加而扩展它们.Hugging Face ...
- 将训练集构建成ImageNet模型
以下程序实现将训练集构建为ImageNet模型,训练集图片为56个民族 import java.io.File; import java.io.FileNotFoundException; impor ...
- 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)
前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...
- 【实践】如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统)
如何利用tensorflow的object_detection api开源框架训练基于自己数据集的模型(Windows10系统) 一.环境配置 1. Python3.7.x(注:我用的是3.7.3.安 ...
- keras系列︱Sequential与Model模型、keras基本结构功能(一)
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...
随机推荐
- LSTM实现文本情感分类demo
import torch import torch.optim as optim import torch.nn as nn import numpy as np import torch.nn.fu ...
- P2918
[USACO08NOV]Buying Hay S 题意描述 约翰的干草库存已经告罄,他打算为奶牛们采购 H(1 \leq H \leq 50000)H(1≤H≤50000) 磅干草. 他知道 N(1 ...
- 【RocketMQ 系列】 RocketMQ 双主双从(同步双写) 集群搭建
1. 各角色介绍 Producer:消息的发送者:举例:发信者 Consumer:消息接收者:举例:收信者 Broker:暂存和传输信息:举例:邮局 NameServer:管理Broker:举例:各个 ...
- LAMP与LNMP架构的区别
我们就来说说ApacheApache是世界上用排名第一的Web服务器软件,其几乎可以在所有广泛使用的计算机平台上运行,由于其跨平台和安全性被广泛使用,是最流行的Web服务端软件之一.相比于nginx, ...
- AT_abc182_d 题解
洛谷链接&Atcoder 链接 本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读. 题目简述 从数轴的原点开始向正方向走. 第一次向前走 \(a_1\) 步,第二次向前走 \(a_ ...
- vue项目读取文件问题
问题:在src\assets资源目录存放非图片文件无法获取. 解决:将非图片文件存放到public上,读取的时候路径不带public. 例如:资源的相对路径为:public/roboto/1Kg.wo ...
- odoo 开发入门教程系列-基本视图
在上一章中已经看到,odoo能够为给定模型生成默认视图.实际上,默认视图对于业务应用程序来说是不可接受的.相反,我们至少应该以逻辑的方式组织各个字段. 视图是在带有操作和菜单的XML文件中定义的.它们 ...
- Odoo 自定义form表单按钮点击事件处理程序
实践环境 Odoo 14.0-20221212 (Community Edition) 代码实现 方案1 通过研究发现,点击odoo form表单按钮时,会调用odoo14\odoo\addons\w ...
- fasterWhisper和MoneyPrinterPlus无缝集成
MoneyPrinterPlus之前使用的是各种云厂商的语音识别服务来进行语音的视频和字幕的识别工作. 但是很多小伙伴说云服务用不起. 那么没办法,MoneyPrinterPlus上线最新版本,支持f ...
- 垃圾回收器比较:CMS 和 G1
前言 在查看系统内存监控的过程中,发现有几台机器的内存使用率一直很高,而且是呈现一个不太正常的高度,初始以为是 GC 不完全,也就是 JVM 内有大量对象不能回收,于是采用 Arthas 诊断查看一下 ...