题目链接

题目

题目描述

Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return!

Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.

输入描述

  • Line 1: Two integers, K and N.

  • Lines 2..1+K: Each line contains the amount of money of one of FJ's

    coins.

  • Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended

    purchases.

输出描述

  • Line 1: The maximum amount of money FJ can end up with, or -1 if FJ

    cannot complete all of his purchases.

示例1

输入

3 6
12
15
10
6
3
3
2
3
7

输出

12

说明

INPUT DETAILS:

FJ has 3 coins of values 12, 15, and 10. He must make purchases in

sequence of value 6, 3, 3, 2, 3, and 7.

OUTPUT DETAILS:

FJ spends his 10-unit coin on the first two purchases, then the 15-unit

coin on the remaining purchases. This leaves him with the 12-unit coin.

题解

知识点:状压dp,二分。

先前缀和货物价值,方便查找加能到达的不大于上一次价值加上硬币价值的最大货物价值,之后就是个TSP解法。

时间复杂度 \(O(m2^m\log n)\)

空间复杂度 \(O(n+2^m)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int c[20], a[100007], dp[(1 << 16) + 7]; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int m, n;
cin >> m >> n;
for (int i = 1;i <= m;i++) cin >> c[i];
for (int i = 1;i <= n;i++) cin >> a[i], a[i] += a[i - 1];
ll ans = -1;
for (int i = 0;i < (1 << m);i++) {
ll sum = 0;
for (int j = 1;j <= m;j++) {
if (!(i & (1 << (j - 1)))) {
sum += c[j];
continue;
}
int k = upper_bound(a + 1, a + n + 1, a[dp[i ^ (1 << (j - 1))]] + c[j]) - a - 1;
dp[i] = max(dp[i], k);
}
if (dp[i] == n) ans = max(ans, sum);
}
cout << ans << '\n';
return 0;
}

NC24416 [USACO 2013 Nov G]No Change的更多相关文章

  1. USACO翻译:USACO 2013 NOV Silver三题

    USACO 2013 NOV SILVER 一.题目概览 中文题目名称 未有的奶牛 拥挤的奶牛 弹簧牛 英文题目名称 nocow crowded pogocow 可执行文件名 nocow crowde ...

  2. NC25025 [USACO 2007 Nov G]Sunscreen

    NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...

  3. USACO 2013 Nov Silver Pogo-Cow

    最近因为闲的蛋疼(停课了),所以开始做一些 USACO 的银组题.被完虐啊 TAT 貌似 Pogo-Cow 这题是 2013 Nov Silver 唯一一道可说的题目? Pogo-Cow Descri ...

  4. usaco No Change, 2013 Nov 不找零(二分查找+状压dp)

    Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci 元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身 ...

  5. USACO翻译:USACO 2013 DEC Silver三题

    USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...

  6. USACO翻译:USACO 2013 JAN三题(1)

    USACO 2013 JAN 一.题目概览 中文题目名称 镜子 栅栏油漆 奶牛排队 英文题目名称 mirrors paint lineup 可执行文件名 mirrors paint lineup 输入 ...

  7. The Ninth Hunan Collegiate Programming Contest (2013) Problem G

    Problem G Good Teacher I want to be a good teacher, so at least I need to remember all the student n ...

  8. [USACO 2011 Nov Gold] Cow Steeplechase【二分图】

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=93 很容易发现,这是一个二分图的模型.竖直线是X集,水平线是Y集,若某条竖 ...

  9. Day Tip:SharePoint 2013 *.ascx.g.cs文件

    在开发SharePoint2013的WebPart时,会产生一个*.ascx.g.cs文件.如果用TFS管理源代码经常遇到这个文件丢失.这让人很困扰,如果丢失了请在如下图中添加如下代码:       ...

  10. 2013长沙 G Graph Reconstruction (Havel-Hakimi定理)

    Graph Reconstruction Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Let there ...

随机推荐

  1. Mycat 实现分库分表及读写分离

    本文为博主原创,未经允许不得转载: Mycat 官网: http://mycat.org.cn/ MyCat 权威指南 文档:http://www.mycat.org.cn/document/myca ...

  2. HTTP 及 http 请求解析过程

    本文为博主原创,未经允许不得转载: HTTP 全称为:超文本传输协议(HyperText Transfer Protocol,HTTP),一种无状态的,以请求/应答方式运行的协议, 它使用可扩展的语义 ...

  3. [转帖]3--二进制安装k8s

    https://www.cnblogs.com/caodan01/p/15104491.html 目录 一.节点规划 二.插件规划 三.系统优化(所有master节点) 1.关闭swap分区 2.关闭 ...

  4. [转帖]LOAD DATA INFILE 导入数据

    https://www.jianshu.com/p/bcafd8f3ad8e LOAD DATA INFILE语句用于高速地从一个文本文件中读取行,并写入一个表中.文件名称必须为一个文字字符串.LOA ...

  5. [转帖]CPU计算性能speccpu2006的测试方法及工具下载

    https://www.yii666.com/blog/335517.html CPU计算性能speccpu2006的测试方法及工具下载 简介 测试原理 目录结构 测试方法 基准测试项解析 测试结果 ...

  6. 使用shell进行简单分析增量更新时间的方法

    使用shell进行简单分析增量更新时间的方法 思路 产品里面更新增量时耗时较久, 想着能够简单分析下哪些补丁更新时间久 哪些相同前缀的补丁更新的时间累积较久. 本来想通过全shell的方式进行处理 但 ...

  7. 买彩票能中大奖?用Java盘点常见的概率悖论 | 京东云技术团队

    引言 <双色球头奖概率与被雷劈中的概率哪个高?> <3人轮流射击,枪法最差的反而更容易活下来?> 让我们用Java来探索ta们! 悖论1:著名的三门问题 规则描述:你正在参加一 ...

  8. echarts显示地图

    <template> <div class="managingPatientSize"> <div id="china-map"& ...

  9. vue3自定义指令(防抖指令)与vue3与vue2指令的对比

    定义指令的变化 根据vue3文档的描述 https://v3.cn.vuejs.org/guide/migration/introduction.html#%E6%B8%B2%E6%9F%93%E5% ...

  10. 替换 &开头。;结尾之间的内容。用空格代替他们

    替换 &开头.;结尾之间的内容.用空格代替他们 var regExp = /\&.*?\;/g; var str = '123&asdsa;dqwe'; str = str.r ...