命题: 设n阶方阵A相似于对角阵Λ, λ是A的k重特征值, 则r(λE-A)=n-k.
证明:
由定理3.9: A~Λ <=> A有n个线性无关的特征向量,
知k重特征值λ存在k个线性无关的特征向量,
故方程组(λE-A)x=0基础解系由k个解组成. (1)
由定理2.15: Bx=0的基础解系由n-r(B)个解组成,
知(λE-A)x=0的基础解系由n-r(λE-A)个解组成. (2)
由(1)(2)知, k=n-r(λE-A), 即r(λE-A)=n-k.

证明: 设n阶方阵A相似于对角阵Λ, λ是A的k重特征值, 则r(λE-A)=n-k.的更多相关文章

  1. 将n阶方阵左下半三角中的元素值置0.

    /*===================================== 将n阶方阵左下半三角中的元素值置0. 0<n<10. =========================== ...

  2. n阶方阵A可逆充分必要条件

    n阶方阵A可逆 充分必要条件:<=> A非奇异(非奇异矩阵就是对应的行列式不等于等于0的方阵)<=> |A|≠0 <=> r(A) = n <=> A的 ...

  3. 代数余子式的由来/代数余子式为什么-1的系数是ⁱ⁺ʲ?/证明一个n阶行列式,如果其中第i行(或第j列)所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积/证明行列式按行(列)展开法则:n(n>1)阶行列式等于它任意一行(列)的所有元素与它们对应的代数余子式的乘积的和。

    代数余子式的由来/代数余子式为什么-1的系数是ⁱ⁺ʲ?/证明一个n阶行列式,如果其中第i行(或第j列)所有元素除aᵢⱼ外都为零,那么这行列式等于aᵢⱼ与它的代数余子式的乘积/证明行列式按行(列)展开法 ...

  4. 求n阶方阵的值(递归)

    若有n*n阶行列式A,则: |A|=A[1][1]*M[1][1]+A[1][2]*M[1][2]+...A[1][n]*M[1][n]:其中M[1][i] 表示原矩阵元素A[1][i]的代数余子式: ...

  5. 设子数组A[0:k]和A[k+1:N-1]已排好序(0≤K≤N-1)。试设计一个合并这2个子数组为排好序的数组A[0:N-1]的算法。

    设子数组A[0:k]和A[k+1:N-1]已排好序(0≤K≤N-1).试设计一个合并这2个子数组为排好序的数组A[0:N-1]的算法.要求算法在最坏情况下所用的计算时间为O(N),只用到O(1)的辅助 ...

  6. BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...

  7. n阶方阵,数字从1~n^2,顺时针增大

    运行结果如下图: 解题思路:可以将这个问题分解成x个外围正方形所围成的图形,外围的正方形又可以分为4个步骤,向右依次增大.向下依次增大.向左依次增大.向上依次增大.基本思路就是如此,最关键的就是什么时 ...

  8. n阶方阵的最值问题和对角线的和问题

    如题! package 矩阵2; public class JuZheng { public static void main(String args[]) { int array[][] = { { ...

  9. Lua用一维数组存储一个n阶方阵,输出这个方阵的正对角线上的数的和与反对角线上的数的和的差的绝对值。

    arr = {, , , , , , , , -} function diagonalDifference(arr) dimesion = math.sqrt(#arr) arr1 = {} sum1 ...

  10. 小明同学喜欢体育锻炼,他常常去操场上跑步。跑道是一个圆形,在本题中,我们认为跑道是一个半径为R的圆形,设圆心的坐标原点(0,0)。小明跑步的起点坐标为(R,0),他沿着圆形跑道跑步,而且一直沿着一个方向跑步。回到家后,他查看了自己的计步器,计步器显示他跑步的总路程为L。小明想知道自己结束跑步时的坐标,但是他忘记自己是沿着顺时针方向还是逆时针方向跑的了。他想知道在这两种情况下的答案分别是多少。

    include "stdafx.h" #include<iostream> #include<vector> #include<string> ...

随机推荐

  1. Aspect切面进行统一参数处理demo

    Aspect切面进行统一参数处理demo //导入 implementation('org.springframework:spring-aspects:5.3.22') import com.exa ...

  2. 认真学习CSS3-问题收集-101号-莫名其妙的row行高

    其他人都有事情,有些事情只好自己上阵,自己做,最踏实! 做了两个基本一样的页面,都是采用bootsrap+jquey+js的技术,业务内容就是简单的查询,加上一些简单的效果,没有啥特别的内容. 由于历 ...

  3. dotnet 融合 Avalonia 和 UNO 框架

    现在在 .NET 系列里面,势头比较猛的 UI 框架中,就包括了 Avalonia 和 UNO 框架.本文将告诉大家如何尝试在一个解决方案里面融合 Avalonia 和 UNO 两个框架,即在一个进程 ...

  4. HDD成都站:HMS Core 6.0带来新可能,多元服务驱动产品价值提升

    9月10日,由华为开发者联盟主办的HDD(Huawei Developer Day)于成都举行.活动中,华为HMS Core各领域专家重点解读了HMS Core 6.0为开发者带来的多项全新能力,及生 ...

  5. python重拾基础第一天

    本节内容 Python介绍 发展史 Python 2 or 3? 安装 Hello World程序 变量 用户输入 模块初识 .pyc是个什么鬼? 数据类型初识 数据运算 表达式if ...else语 ...

  6. 高通Android UEFI XBL 代码流程分析

    高通Android UEFI XBL 代码流程分析 背景 之前学习的lk阶段点亮LCD的流程算是比较经典,但是高通已经推出了很多种基于UEFI方案的启动架构. 所以需要对这块比较新的技术进行学习.在学 ...

  7. React Context 的使用

    使用React开发应用程序时,如果多个组件需要共享数据,可以把数据放到父组件中,通过属性向下传递给子组件.但当组件嵌套较深时,两个最底层的组件要想共享数据,那就霜要把数据放到最顶层的组件中,然后再一层 ...

  8. java中的即时编译(JIT)简介

    Java发展这么多年一直长青,很大一部分得益于开发人员长期对其坚持不懈的优化:写得更少,跑得更快!JIT就是其中一项十分重要的优化. JIT全程Java Intime Compiler,即Java即时 ...

  9. c语言生成随机数

    记录示例,留作自用 #include <stdio.h> #include <stdlib.h> #include <time.h> int main(void) ...

  10. NewStarCTF 2023 week1

    NewStarCTF 2023 WEEK1|CRYPTO brainfuck http://bf.doleczek.pl/ flag{Oiiaioooooiai#b7c0b1866fe58e12} C ...