构造预处理矩阵M(对称正定)

下图来自:预处理共轭梯度法(1)

下图来自:预处理(Preconditioning)

根据上面的对于预处理共轭梯度法的介绍,我们可以得到使用lanczos算法进行的预处理共轭梯度算法:

代码:

点击查看代码
import numpy as np
# from rllab.misc.ext import sliced_fun EPS = np.finfo('float64').tiny def cg(f_Ax, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10):
"""
Demmel p 312
"""
p = b.copy()
r = b.copy()
x = np.zeros_like(b)
rdotr = r.dot(r) fmtstr = "%10i %10.3g %10.3g"
titlestr = "%10s %10s %10s"
if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters):
if callback is not None:
callback(x)
if verbose: print(fmtstr % (i, rdotr, np.linalg.norm(x)))
z = f_Ax(p)
v = rdotr / p.dot(z)
x += v * p
r -= v * z
newrdotr = r.dot(r)
mu = newrdotr / rdotr
p = r + mu * p rdotr = newrdotr
if rdotr < residual_tol:
break if callback is not None:
callback(x)
if verbose: print(fmtstr % (i + 1, rdotr, np.linalg.norm(x))) # pylint: disable=W0631
return x def preconditioned_cg(f_Ax, f_Minvx, b, cg_iters=10, callback=None, verbose=False, residual_tol=1e-10):
"""
Demmel p 318
"""
x = np.zeros_like(b)
r = b.copy()
p = f_Minvx(b)
y = p
ydotr = y.dot(r) fmtstr = "%10i %10.3g %10.3g"
titlestr = "%10s %10s %10s"
if verbose: print(titlestr % ("iter", "residual norm", "soln norm")) for i in range(cg_iters):
if callback is not None:
callback(x, f_Ax)
if verbose: print(fmtstr % (i, ydotr, np.linalg.norm(x)))
z = f_Ax(p)
v = ydotr / p.dot(z)
x += v * p
r -= v * z
y = f_Minvx(r)
newydotr = y.dot(r)
mu = newydotr / ydotr
p = y + mu * p ydotr = newydotr if ydotr < residual_tol:
break if verbose: print(fmtstr % (cg_iters, ydotr, np.linalg.norm(x))) return x def test_cg():
A = np.random.randn(5, 5)
# A = np.array([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
A = A.T.dot(A)
b = np.random.randn(5)
x = cg(lambda x: A.dot(x), b, cg_iters=5, verbose=True) # pylint: disable=W0108
assert np.allclose(A.dot(x), b) x = preconditioned_cg(lambda x: A.dot(x), lambda x: np.linalg.solve(A, x), b, cg_iters=5,
verbose=True) # pylint: disable=W0108
assert np.allclose(A.dot(x), b) x = preconditioned_cg(lambda x: A.dot(x), lambda x: x / np.diag(A), b, cg_iters=5,
verbose=True) # pylint: disable=W0108
assert np.allclose(A.dot(x), b) def lanczos(f_Ax, b, k):
"""
Runs Lanczos algorithm to generate a orthogonal basis for the Krylov subspace
b, Ab, A^2b, ...
as well as the upper hessenberg matrix T = Q^T A Q from Demmel ch 6
""" assert k > 1 alphas = []
betas = []
qs = [] q = b / np.linalg.norm(b)
beta = 0
qm = np.zeros_like(b)
for j in range(k):
qs.append(q) z = f_Ax(q) alpha = q.dot(z)
alphas.append(alpha)
z -= alpha * q + beta * qm beta = np.linalg.norm(z)
betas.append(beta) print("beta", beta)
if beta < 1e-9:
print("lanczos: early after %i/%i dimensions" % (j + 1, k))
break
else:
qm = q
q = z / beta return np.array(qs, 'float64').T, np.array(alphas, 'float64'), np.array(betas[:-1], 'float64') def lanczos2(f_Ax, b, k, residual_thresh=1e-9):
"""
Runs Lanczos algorithm to generate a orthogonal basis for the Krylov subspace
b, Ab, A^2b, ...
as well as the upper hessenberg matrix T = Q^T A Q
from Demmel ch 6
"""
b = b.astype('float64')
assert k > 1
H = np.zeros((k, k))
qs = [] q = b / np.linalg.norm(b)
beta = 0 for j in range(k):
qs.append(q) z = f_Ax(q.astype('float64')).astype('float64')
for (i, q) in enumerate(qs):
H[j, i] = H[i, j] = h = q.dot(z)
z -= h * q beta = np.linalg.norm(z)
if beta < residual_thresh:
print("lanczos2: stopping early after %i/%i dimensions residual %f < %f" % (j + 1, k, beta, residual_thresh))
break
else:
q = z / beta return np.array(qs).T, H[:len(qs), :len(qs)] def make_tridiagonal(alphas, betas):
assert len(alphas) == len(betas) + 1
N = alphas.size
out = np.zeros((N, N), 'float64')
out.flat[0:N ** 2:N + 1] = alphas
out.flat[1:N ** 2 - N:N + 1] = betas
out.flat[N:N ** 2 - 1:N + 1] = betas
return out def tridiagonal_eigenvalues(alphas, betas):
T = make_tridiagonal(alphas, betas)
return np.linalg.eigvalsh(T) def test_lanczos():
np.set_printoptions(precision=4) A = np.random.randn(5, 5)
A = A.T.dot(A)
b = np.random.randn(5)
f_Ax = lambda x: A.dot(x) # pylint: disable=W0108
Q, alphas, betas = lanczos(f_Ax, b, 10)
H = make_tridiagonal(alphas, betas)
assert np.allclose(Q.T.dot(A).dot(Q), H)
assert np.allclose(Q.dot(H).dot(Q.T), A)
assert np.allclose(np.linalg.eigvalsh(H), np.linalg.eigvalsh(A)) Q, H1 = lanczos2(f_Ax, b, 10)
assert np.allclose(H, H1, atol=1e-6) print("ritz eigvals:")
for i in range(1, 6):
Qi = Q[:, :i]
Hi = Qi.T.dot(A).dot(Qi)
print(np.linalg.eigvalsh(Hi)[::-1])
print("true eigvals:")
print(np.linalg.eigvalsh(A)[::-1]) print("lanczos on ill-conditioned problem")
A = np.diag(10 ** np.arange(5))
Q, H1 = lanczos2(f_Ax, b, 10)
print(np.linalg.eigvalsh(H1)) print("lanczos on ill-conditioned problem with noise") def f_Ax_noisy(x):
return A.dot(x) + np.random.randn(x.size) * 1e-3 Q, H1 = lanczos2(f_Ax_noisy, b, 10)
print(np.linalg.eigvalsh(H1)) if __name__ == "__main__": np.set_printoptions(precision=4) A = np.random.randn(5, 5)
A = A.T.dot(A)
b = np.random.randn(5)
f_Ax = lambda x: A.dot(x) # pylint: disable=W0108 x = cg(lambda x: A.dot(x), b, cg_iters=5, verbose=True) # pylint: disable=W0108
assert np.allclose(A.dot(x), b) Q, H = lanczos2(f_Ax, b, 10) M_inv = Q.T.dot(Q) x = preconditioned_cg(lambda x: A.dot(x), lambda x: M_inv.dot(x), b, cg_iters=5,
verbose=True) # pylint: disable=W0108
assert np.allclose(A.dot(x), b) A_ = Q.T.dot(A).dot(Q)
b_ = Q.T.dot(b)
x_ = cg(lambda x: A_.dot(x), b_, cg_iters=5, verbose=True) # pylint: disable=W0108
x = Q.dot(x_)
assert np.allclose(A.dot(x), b)

运算结果:

因为预处理的共轭梯度法的适用环境:

“正定的大型稀疏矩阵”,并且矩阵的条件数(最大最小特征值之比)很大的情况。

因此,这里给出的使用lanczos算法进行的预处理共轭梯度算法并没有比共轭梯度法有运算速度上的提升。

使用lanczos算法进行的预处理共轭梯度算法(Preconditioned Conjugate Gradients Method)的更多相关文章

  1. 共轭梯度算法求最小值-scipy

    # coding=utf-8 #共轭梯度算法求最小值 import numpy as np from scipy import optimize def f(x, *args): u, v = x a ...

  2. 机器学习: 共轭梯度算法(PCG)

    今天介绍数值计算和优化方法中非常有效的一种数值解法,共轭梯度法.我们知道,在解大型线性方程组的时候,很少会有一步到位的精确解析解,一般都需要通过迭代来进行逼近,而 PCG 就是这样一种迭代逼近算法. ...

  3. Mahout 系列之----共轭梯度

    无预处理共轭梯度 要求解线性方程组 ,稳定双共轭梯度法从初始解 开始按以下步骤迭代: 任意选择向量 使得 ,例如, 对 若 足够精确则退出 预处理共轭梯度 预处理通常被用来加速迭代方法的收敛.要使用预 ...

  4. 近端梯度算法(Proximal Gradient Descent)

    L1正则化是一种常用的获取稀疏解的手段,同时L1范数也是L0范数的松弛范数.求解L1正则化问题最常用的手段就是通过加速近端梯度算法来实现的. 考虑一个这样的问题: minx  f(x)+λg(x) x ...

  5. 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换

    一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...

  6. 【算法随记】Canny边缘检测算法实现和优化分析。

    以前的博文大部分都写的非常详细,有很多分析过程,不过写起来确实很累人,一般一篇好的文章要整理个三四天,但是,时间越来越紧张,后续的一些算法可能就以随记的方式,把实现过程的一些比较容易出错和有价值的细节 ...

  7. Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦

    Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http ...

  8. 前向分步算法 && AdaBoost算法 && 提升树(GBDT)算法 && XGBoost算法

    1. 提升方法 提升(boosting)方法是一种常用的统计学方法,在分类问题中,它通过逐轮不断改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能 0x1: 提升方法的基本 ...

  9. 前向传播算法(Forward propagation)与反向传播算法(Back propagation)

    虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与 ...

  10. 词性标注算法之CLAWS算法和VOLSUNGA算法

    背景知识 词性标注:将句子中兼类词的词性根据上下文唯一地确定下来. 一.基于规则的词性标注方法 1.原理 利用事先制定好的规则对具有多个词性的词进行消歧,最后保留一个正确的词性. 2.步骤 ①对词性歧 ...

随机推荐

  1. kettle从入门到精通 第三十三课 再谈 kettle 表输出 分区/分片

    1.之前第九章有讲过kettle 表输出步骤,里面有简单的提到过表输出步骤里面的表分区设置,这里详细介绍下. 表分区数据:选择此选项可根据"分区"字段中指定的日期字段的值将数据拆分 ...

  2. kettle从入门到精通 第六十七课 ETL之kettle 再谈kettle阻塞,阻塞多个分支的多个步骤

    场景:ETL沟通交流群内有小伙伴反馈,如何多个分支处理完毕之后记录下同步结果呢?或者是调用后续步骤.存储过程.三方接口等. 解决:使用步骤Blocking step进行阻塞处理即可. 1. 如下流程图 ...

  3. 燕千云ITAM:解锁数字化时代下企业竞争新优势

    数字化时代下,企业的IT资产管理(ITAM)尤为关键.企业通过在成长的每个阶段实施有效的IT资产管理策略,以确保资源的最优化利用和风险的有效控制,并在竞争激烈的市场环境中保持优势.然而实际实践中,企业 ...

  4. spring boot jpa 进行通用多条件动态查询和更新 接口

    原因: jpa 没有类似于mybatis的那种 拼接sql的方式 想动态更新 需要使用 CriteriaUpdate的方式 去一直拼接,其实大多数场景只要传入一个非空实体类,去动态拼接sql 1.定义 ...

  5. zabbix---监控Oracle12c数据库

    使用插件:orabbix用于监控oracle实例的zabbix插件 orabbix插件下载地址:http://www.smartmarmot.com/product/orabbix/download/ ...

  6. Linux内核驱动:cdev、misc以及device三者之间的联系和区别

    Linux内核驱动:cdev.misc以及device三者之间的联系和区别 背景 我想在cdev中使用dev_err等log打印函数,但是跟踪了一下cdev中的原型,发现并不是我想要的. 常见的驱动是 ...

  7. Android 通过odex优化提高首次开机速度

    背景 客户反馈说开机时间过长,需要优化. 原文:https://blog.csdn.net/croop520/article/details/73930184 介绍 现在很多Android都需要预装很 ...

  8. Nuxt3 的生命周期和钩子函数(五)

    title: Nuxt3 的生命周期和钩子函数(五) date: 2024/6/29 updated: 2024/6/29 author: cmdragon excerpt: 摘要:本文详细介绍了Nu ...

  9. 『vulnhub系列』EVILBOX-ONE

    『vulnhub系列』EVILBOX-ONE 下载地址: https://www.vulnhub.com/entry/evilbox-one,736/ 信息搜集: 使用nmap探测内网存活主机,发现开 ...

  10. 物联网浏览器(IoTBrowser)-基于计算机视觉开发的应用“智慧眼AIEye”

    一.起因 最近毕业在家:),准备筹划社区运营和IoTBrowser升级的事务,遇到了一系列物业管理上的问题,本来出于好心提醒物业人员,结果反被误认为是打广告推销的,当时被激怒一下,后面一想也许这也是一 ...