洛谷题目传送门

ATCODER传送门


分析

设\(dp[i][j]\)表示放完\(i\)个白球和\(j\)种有颜色的球的情况

首先\(dp[i][j]\)显然可以从\(dp[i-1][j]\)转移,

然后也可以从\(dp[i][j-1]\)转移,选择剩下\(n-j+1\)种颜色填入,

那么现在要在剩下的\(n\times k-i-1-(j-1)\times(k-1)\)个位置中

选择\(k-2\)个位置填入下一种颜色,

也就是\(C(n\times k-i-1-(j-1)\times (k-1),k-2)\)

  1. 排列长度\(n\times k\),放入\(i\)个白球和\(j-1\)种颜色(每种颜色为\(k-1\)个)
  2. 为什么是\(k-2\),如果不指定当前剩下的第一个位置为该颜色,那么当选择其它颜色填入时就会算重,并且剩下的总位置也要减1

预处理阶乘和乘法逆元就可以了

The End。


代码

#include <cstdio>
#define rr register
using namespace std;
const int mod=1000000007,N=2001;
int n,k,inv[N*N],fac[N*N],dp[N][N];
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline signed c(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
signed main(){
inv[0]=inv[1]=fac[0]=fac[1]=1,scanf("%d%d",&n,&k);
if (k==1) return !putchar(49);
for (rr int i=2;i<=n*k;++i) inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
for (rr int i=2;i<=n*k;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (rr int i=0;i<=n;++i) dp[i][0]=1;
for (rr int i=1;i<=n;++i) for (rr int j=1;j<=i;++j)
dp[i][j]=mo(dp[i-1][j],1ll*dp[i][j-1]*(n-j+1)%mod*c(n*k-i-1-(j-1)*(k-1),k-2)%mod);
return !printf("%d\n",dp[n][n]);
}

#排列组合,dp#AT2000 [AGC002F] Leftmost Ball的更多相关文章

  1. AtCoder AGC002F Leftmost Ball (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f 题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i ...

  2. [Bzoj3193][JLOI2013]地形生成 (排列组合 + DP)

    3193: [JLOI2013]地形生成 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 459  Solved: 223[Submit][Status ...

  3. nyoj1076-方案数量 【排列组合 dp】

    http://acm.nyist.net/JudgeOnline/problem.php?pid=1076 方案数量 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 ...

  4. [AT2000] [agc002_f] Leftmost Ball

    题目链接 AtCoder:https://agc002.contest.atcoder.jp/tasks/agc002_f 洛谷:https://www.luogu.org/problemnew/sh ...

  5. AGC002F Leftmost Ball

    题目传送门 Description \(n\)种颜色的球,每种\(k\)个,\((n,k\leq 2000)\)将\(n\cdot k\)个球排成一排,把每种颜色最左边的那个涂成白色(初始不含白色), ...

  6. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

  7. LightOJ1005 Rooks(DP/排列组合)

    题目是在n*n的棋盘上放k个车使其不互相攻击的方案数. 首先可以明确的是n*n最多只能合法地放n个车,即每一行都指派一个列去放车. dp[i][j]表示棋盘前i行总共放了j个车的方案数 dp[0][0 ...

  8. 【agc002f】Leftmost Ball(动态规划)

    [agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...

  9. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  10. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

随机推荐

  1. python中操作csv

    示例 import csv with open('t.csv', mode='r', encoding='utf-8') as f: reader_obj = csv.reader(f) # 通过re ...

  2. Kotlin 协程三 —— 数据流 Flow

    目录 一.Flow 的基本使用 1.1 Sequence 与 Flow 1.2 Flow 的简单使用 1.3 创建常规 Flow 的常用方式: 1.4 Flow 是冷流(惰性的) 1.5 Flow 的 ...

  3. java+mysql学生信息管理系统

    实现:mysql+eclipse(idea设置之后也可运行)+jdk8 功能: 管理员:管理登+管理员注册 学生:添加学生信息+删除学生信息+修改学生信息+查询学生信息+学生列表展示 界面展示: 详情 ...

  4. SwitUI初次体验

    序言 开年的第一篇文章,今天分享的是SwiftUI,SwiftUI出来好几年,之前一直没学习,所以现在才开始:如果大家还留在 iOS 开发,这们语言也是一个趋势: 目前待业中.... 不得不说已逝的2 ...

  5. HTTP1.0/HTTP1.1/HTTP2.0的演进

    HTTP1.0 短连接,每次请求都需要重新建立连接 不支持断点续传 HTTP1.1 支持长连接,同一个客户端连接可保持长连接,请求可在连接中顺序发出. 查看http请求头中有keepalive 参数 ...

  6. Spring Boot+Thymeleaf+MyBatis--推荐一个后端练手极佳的商城项目

    项目整体架构 newbee-mall ├── src/main/java └── ltd.newbee.mall ├── common // 存放相关的常量配置及枚举类 ├── config // 存 ...

  7. STL-unordered_map,unordered_set模拟实现

    unordered_set #pragma once #include"28hashtable_container.h" namespace test { //template & ...

  8. URL(网址)的组成

    URL(Uniform Resource Locator,统一资源定位器)就是通常所说的"网址".它是用来标识互联网上资源(如网页.图片.文件等)的唯一地址.URL由协议(如htt ...

  9. STM32F103xC,xD,xE引脚定义

    STM32F103xC,xD,xE引脚定义 由于在使用STM32系列芯片过程中发现互联网没有整理好的引脚定义,因此自己整理一份,方便以后查阅. GPIOA Pin 重新上电时的功能 默认功能 重映射 ...

  10. 协议CAN&报文&仲裁

    简介 物理层 CAN 协议提供了 5 种帧格式来传输数据 数据链路层 中数据帧和遥控帧有标准格式和扩展格式两种,标准格式有 11 位标识符(ID),扩展格式有 29 个标识符(ID)  显性0,隐性1 ...