【HDU5934】Bomb——有向图强连通分量+重建图
题目大意
二维平面上有 n 个爆炸桶,i−thi-thi−th爆炸桶位置为 (xi,yi)(x_i, y_i)(xi,yi) 爆炸范围为 rir_iri ,且需要 cic_ici 的价格引爆,求把所有桶引爆所需的钱。
分析
通过求有向图的强连通分量,求出所有爆炸块(满足引爆一个块内的任意一个爆炸桶就可以摧毁这个块内的爆炸桶),然后把所有爆炸块视为一个爆炸桶,价值为爆炸块内的价值最小值,然后重建有向图,将新建的有向图所有入度为 0 的点的价值相加,就是答案。
AC-Code
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1100; // 点数
const int MAXM = 1000100; // 边数
struct Edge {
int to, next;
} edge[MAXM]; // 只有这里写的是 MAXM
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; //Belong 数组的值是 1 ~ scc
int Index, top;
int scc; // 强连通分量的个数
bool Instack[MAXN];
int num[MAXN]; // 各个强连通分量包含点的个数,数组编号 1 ~ scc
// num 数组不一定需要,结合实际情况
void addedge(int u, int v) {
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void Tarjan(int u) {
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next) {
v = edge[i].to;
if (!DFN[v]) {
Tarjan(v);
if (Low[u] > Low[v])
Low[u] = Low[v];
} else if (Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if (Low[u] == DFN[u]) {
scc++;
do {
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
} while (v != u);
}
}
void solve(int N) {
memset(DFN, 0, sizeof(DFN));
memset(Instack, false, sizeof(Instack));
memset(num, 0, sizeof(num));
Index = scc = top = 0;
for (int i = 1; i <= N; i++)
if (!DFN[i])
Tarjan(i);
}
void init() {
tot = 0;
memset(head, -1, sizeof(head));
}
struct node {
int x, y, r, c;
bool in_boom(const node &other) const {
return hypot(abs(x - other.x), abs(y - other.y)) <= r;
}
};
node nodeList[1100];
int n;
void init_graph1() {
init();
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
if (nodeList[i].in_boom(nodeList[j]))
addedge(i, j);
}
}
}
struct Graph {
struct Node {
int deg;
int value;
};
Node node[MAXN];
void init() {
for (int i = 0; i < n + 5; ++i) {
node[i].deg = 0;
node[i].value = INT_MAX;
}
}
void add_edge(int from, int to) {
if (from != to)
node[to].deg++;
}
};
Graph graph;
int ans;
void tp_init() {
graph.init();
for (int i = 1; i <= n; ++i) {
graph.node[Belong[i]].value = min(graph.node[Belong[i]].value, nodeList[i].c);
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
if (nodeList[i].in_boom(nodeList[j]))
graph.add_edge(Belong[i], Belong[j]);
}
}
}
void tp() {
ans = 0;
tp_init();
for (int i = 1; i <= scc; ++i) {
if (graph.node[i].deg == 0) {
ans += graph.node[i].value;
}
}
}
void solve() {
int t;
cin >> t;
for (int ts = 0; ts < t; ++ts) {
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> nodeList[i].x >> nodeList[i].y >> nodeList[i].r >> nodeList[i].c;
}
init_graph1();
solve(n);
tp();
cout << "Case #" << ts + 1 << ": " << ans << endl;
}
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
#ifdef ACM_LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long long test_index_for_debug = 1;
char acm_local_for_debug;
while (cin >> acm_local_for_debug) {
cin.putback(acm_local_for_debug);
if (test_index_for_debug > 20) {
throw runtime_error("Check the stdin!!!");
}
auto start_clock_for_debug = clock();
solve();
auto end_clock_for_debug = clock();
cout << "Test " << test_index_for_debug << " successful" << endl;
cerr << "Test " << test_index_for_debug++ << " Run Time: "
<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
cout << "--------------------------------------------------" << endl;
}
#else
solve();
#endif
return 0;
}
【HDU5934】Bomb——有向图强连通分量+重建图的更多相关文章
- 图的连通性:有向图强连通分量-Tarjan算法
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- 有向图强连通分量 Tarjan算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 【转】有向图强连通分量的Tarjan算法
原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 算法笔记_144:有向图强连通分量的Tarjan算法(Java)
目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...
- 有向图强连通分量的Tarjan算法及模板
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...
- 【转载】有向图强连通分量的Tarjan算法
转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...
- 有向图强连通分量Tarjan算法
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...
随机推荐
- 刷金币全自动脚本 | 让Python每天帮你薅一个早餐钱(送源码)
刷金币全自动脚本 | 让Python每天帮你薅一个早餐钱(送源码) 测试开发社区 6天前 文章转载自公众号 AirPython , 作者 星安果 阅读文本大概需要 12 分钟. 1 目 标 场 景 ...
- [人工智能]NumPy基础
理解NumPy 本文主要介绍NumPy的基础知识,NumPy是一个功能强大的Python库,允许更高级的数据操作和数学计算. 什么是NumPy NumPy,来源自两个单词:Numerical和Pyth ...
- VSCode通过git上传代码
最近也是在不断学习中,接触VSCode时间不长,很多东西也是在学习,所以这里记录下VSCode通过git上传代码,以防之后忘记. 我用的的VSCode版本 起初建立仓库的时候通过命令:(这个是我网上搜 ...
- RHEL系统下安装atlassian-jira-5
操作系统:RHEL 6.4 x86_64 Jira版本:atlassian-jira-5.2.11-x64.bin 安装路径:/opt/atlassian/jira/ 数据保存路径:/opt/atla ...
- 如何在NLP领域第一次做成一件事
作者简介 周明,微软亚洲研究院首席研究员.ACL候任主席(president).中国计算机学会中文信息技术专委会主任.中国中文信息学会常务理事.哈工大.天津大学.南开大学.山东大学等多所学校博士导师. ...
- 算发帖——俄罗斯方块覆盖问题一共有多少个解
问题的提出:如下图,用13块俄罗斯方块覆盖8*8的正方形. 那么一共可以有多少个解呢?(若通过旋转.翻转一个解而得到的新解,则两个解视为同一个解) 首先,求解的问题,已经在上一篇帖子里完成 算 ...
- 4——PHP比较&&复制运算符
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- Sublime Text3 旧版本下载以及破解激活方式
前言 当前Sublime Text3 出到了32**版本,以前直接输入激活码的方法已经不能使用. 而官网又不提供旧版本的下载链接,因此在此分享旧版本下载方式以及激活方式. 下载方法 通过下面这个链接下 ...
- [翻译]python3中新的字符串格式化方法-----f-string
从python3.6开始,引入了新的字符串格式化方式,f-字符串. 这使得格式化字符串变得可读性更高,更简洁,更不容易出现错误而且速度也更快. 在本文后面,会详细介绍f-字符串的用法. 在此之前,让我 ...
- Ubuntu pppoe宽带拨号相关问题
因为可视化界面没有相关设置,因此采用终端命令的方法. 测试环境:Ubuntu 18.0.4 pppoe的配置:$ sudo pppoeconf 然后进入此界面进行一系列宽带拨号的设置. 联网:$ su ...