Tensorflow学习教程------过拟合
Tensorflow学习教程------过拟合
回归:过拟合情况
/
分类过拟合
防止过拟合的方法有三种:
1 增加数据集
2 添加正则项
3 Dropout,意思就是训练的时候隐层神经元每次随机抽取部分参与训练。部分不参与
最后对之前普通神经网络分类mnist数据集的代码进行优化,初始化权重参数的时候采用截断正态分布,偏置项加常数,采用dropout防止过拟合,加三层隐层神经元,最后的准确率达到97%以上。代码如下

# coding: utf-8 # 微信公众号:深度学习与神经网络
# Github:https://github.com/Qinbf
# 优酷频道:http://i.youku.com/sdxxqbf import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #载入数据集
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
keep_prob=tf.placeholder(tf.float32) #创建一个简单的神经网络
W1 = tf.Variable(tf.truncated_normal([784,2000],stddev=0.1))
b1 = tf.Variable(tf.zeros([2000])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob) W2 = tf.Variable(tf.truncated_normal([2000,2000],stddev=0.1))
b2 = tf.Variable(tf.zeros([2000])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob) W3 = tf.Variable(tf.truncated_normal([2000,1000],stddev=0.1))
b3 = tf.Variable(tf.zeros([1000])+0.1)
L3 = tf.nn.tanh(tf.matmul(L2_drop,W3)+b3)
L3_drop = tf.nn.dropout(L3,keep_prob) W4 = tf.Variable(tf.truncated_normal([1000,10],stddev=0.1))
b4 = tf.Variable(tf.zeros([10])+0.1)
prediction = tf.nn.softmax(tf.matmul(L3_drop,W4)+b4) #二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
sess.run(init)
for epoch in range(31):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(test_acc) +",Training Accuracy " + str(train_acc))

结果如下

Iter 0,Testing Accuracy 0.913,Training Accuracy 0.909146
Iter 1,Testing Accuracy 0.9318,Training Accuracy 0.927218
Iter 2,Testing Accuracy 0.9397,Training Accuracy 0.9362
Iter 3,Testing Accuracy 0.943,Training Accuracy 0.940637
Iter 4,Testing Accuracy 0.9449,Training Accuracy 0.945746
Iter 5,Testing Accuracy 0.9489,Training Accuracy 0.949491
Iter 6,Testing Accuracy 0.9505,Training Accuracy 0.9522
Iter 7,Testing Accuracy 0.9542,Training Accuracy 0.956
Iter 8,Testing Accuracy 0.9543,Training Accuracy 0.957782
Iter 9,Testing Accuracy 0.954,Training Accuracy 0.959
Iter 10,Testing Accuracy 0.9558,Training Accuracy 0.959582
Iter 11,Testing Accuracy 0.9594,Training Accuracy 0.963146
Iter 12,Testing Accuracy 0.959,Training Accuracy 0.963746
Iter 13,Testing Accuracy 0.961,Training Accuracy 0.964764
Iter 14,Testing Accuracy 0.9605,Training Accuracy 0.9658
Iter 15,Testing Accuracy 0.9635,Training Accuracy 0.967528
Iter 16,Testing Accuracy 0.9639,Training Accuracy 0.968582
Iter 17,Testing Accuracy 0.9644,Training Accuracy 0.969309
Iter 18,Testing Accuracy 0.9651,Training Accuracy 0.969564
Iter 19,Testing Accuracy 0.9664,Training Accuracy 0.971073
Iter 20,Testing Accuracy 0.9654,Training Accuracy 0.971746
Iter 21,Testing Accuracy 0.9664,Training Accuracy 0.971764
Iter 22,Testing Accuracy 0.9682,Training Accuracy 0.973128
Iter 23,Testing Accuracy 0.9679,Training Accuracy 0.973346
Iter 24,Testing Accuracy 0.9681,Training Accuracy 0.975164
Iter 25,Testing Accuracy 0.969,Training Accuracy 0.9754
Iter 26,Testing Accuracy 0.9706,Training Accuracy 0.975764
Iter 27,Testing Accuracy 0.9694,Training Accuracy 0.975837
Iter 28,Testing Accuracy 0.9703,Training Accuracy 0.977109
Iter 29,Testing Accuracy 0.97,Training Accuracy 0.976946
Iter 30,Testing Accuracy 0.9715,Training Accuracy 0.977491

Testing Accuracy和Training Accuracy之间的差距为0.005991
dropout值设置为1的时候,

Iter 0,Testing Accuracy 0.9471,Training Accuracy 0.955037
Iter 1,Testing Accuracy 0.9597,Training Accuracy 0.9738
Iter 2,Testing Accuracy 0.9616,Training Accuracy 0.980928
Iter 3,Testing Accuracy 0.9661,Training Accuracy 0.985091
Iter 4,Testing Accuracy 0.9674,Training Accuracy 0.987709
Iter 5,Testing Accuracy 0.9692,Training Accuracy 0.989255
Iter 6,Testing Accuracy 0.9692,Training Accuracy 0.990146
Iter 7,Testing Accuracy 0.9708,Training Accuracy 0.991182
Iter 8,Testing Accuracy 0.9711,Training Accuracy 0.991982
Iter 9,Testing Accuracy 0.9712,Training Accuracy 0.9924
Iter 10,Testing Accuracy 0.971,Training Accuracy 0.992691
Iter 11,Testing Accuracy 0.9706,Training Accuracy 0.993055
Iter 12,Testing Accuracy 0.971,Training Accuracy 0.993309
Iter 13,Testing Accuracy 0.9717,Training Accuracy 0.993528
Iter 14,Testing Accuracy 0.9719,Training Accuracy 0.993764
Iter 15,Testing Accuracy 0.9715,Training Accuracy 0.993927
Iter 16,Testing Accuracy 0.9715,Training Accuracy 0.994091
Iter 17,Testing Accuracy 0.9714,Training Accuracy 0.994291
Iter 18,Testing Accuracy 0.9719,Training Accuracy 0.9944
Iter 19,Testing Accuracy 0.9719,Training Accuracy 0.994564
Iter 20,Testing Accuracy 0.9722,Training Accuracy 0.994673
Iter 21,Testing Accuracy 0.9725,Training Accuracy 0.994855
Iter 22,Testing Accuracy 0.9731,Training Accuracy 0.994891
Iter 23,Testing Accuracy 0.9721,Training Accuracy 0.994928
Iter 24,Testing Accuracy 0.9722,Training Accuracy 0.995018
Iter 25,Testing Accuracy 0.9725,Training Accuracy 0.995109
Iter 26,Testing Accuracy 0.9729,Training Accuracy 0.9952
Iter 27,Testing Accuracy 0.9726,Training Accuracy 0.995255
Iter 28,Testing Accuracy 0.9725,Training Accuracy 0.995327
Iter 29,Testing Accuracy 0.9725,Training Accuracy 0.995364
Iter 30,Testing Accuracy 0.9722,Training Accuracy 0.995437

Testing Accuracy和Training Accuracy之间的差距为0.23237,本次实验中只有60000个样本,当样本量到达几百万的时候,这个差距值会更大,也就是训练出的模型在训练数据集中效果非常好,几乎满足了任意一个样本,但是在测试数据集中效果却很差,此时就是典型的过拟合现象。
所以一般稍微复杂的网络中都会加入dropout,防止过拟合。
Tensorflow学习教程------过拟合的更多相关文章
- Tensorflow学习教程------代价函数
Tensorflow学习教程------代价函数 二次代价函数(quadratic cost): 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数.为简单起见,使用一 ...
- Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例
紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import t ...
- tensorflow 学习教程
tensorflow 学习手册 tensorflow 学习手册1:https://cloud.tencent.com/developer/section/1475687 tensorflow 学习手册 ...
- Tensorflow学习教程------创建图启动图
Tensorflow作为目前最热门的机器学习框架之一,受到了工业界和学界的热门追捧.以下几章教程将记录本人学习tensorflow的一些过程. 在tensorflow这个框架里,可以讲是若数据类型,也 ...
- Tensorflow学习教程------lenet多标签分类
本文在上篇的基础上利用lenet进行多标签分类.五个分类标准,每个标准分两类.实际来说,本文所介绍的多标签分类属于多任务学习中的联合训练,具体代码如下. #coding:utf-8 import te ...
- tensorflow学习2-线性拟合和神经网路拟合
线性拟合的思路: 线性拟合代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #%%图形绘制 ...
- Tensorflow学习教程------非线性回归
自己搭建神经网络求解非线性回归系数 代码 #coding:utf-8 import tensorflow as tf import numpy as np import matplotlib.pypl ...
- Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类
#coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...
- Tensorflow学习教程------实现lenet并且进行二分类
#coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename ...
随机推荐
- 该虚拟机似乎正在使用中 如果该虚拟机未在使用请按获取所权T按钮获取他的所有权,否则,请按取消按钮以防损坏
虚拟机出现如下情况 不能够正常过使用,解决办法如下:直接进入上图中配置文件的目录下,然后删除所有的lck结尾的文件夹,然后重新启动, 然后file打开这个文件即可.重新进入虚拟机开机.
- 手把手教你如何玩转CLion
声明:配置是基于CLion的2019.1版本 〇.CLion简介 一.安装 \(JetBrains\)官方下载地址:CLion2019.3 百度网盘:CLion2019.1 个人觉得还是2019.1版 ...
- 打开exe并传参
shellexecute(Application.Handle,'open',PWideChar('E:\控件\TMS.Scripter.Studio.Pro..6.0.2.0.Delphi.BCB. ...
- 使用 mtd-utils 烧写Arm Linux 系统各个部分
有关博客:<Arm-Linux 移植 mtd-utils 1.x>.<mtd-utils 的 使用> 背景: 作为一项技术储备,可用于增强系统可维护性. 要求: 要求主板以mt ...
- checkbox checked属性值
记住我1<input type='checkbox' /> 记住我2<input type='checkbox' /> <button onclick='hehe();' ...
- js实现连续输入之后发送请求
输入框是我们经常会用到的功能,想要实现输入就请求的功能 但是在实际开发中,为了减少服务器压力,会在输入之后停留1s没有输入之后再进行搜索 研究之后用原生js及表单写了一个简单的demo,如果有好的de ...
- nodejs常用模块
推荐的入门教程: <七天学会NodeJS> https://github.com/nqdeng/7-days-nodejs <Node.js 包教不包会> https://g ...
- 指令——cat
作用1:cat有直接打开一个文件的功能,只看不用编辑. 语法:#cat 文件的路径 选项:-n, --number 对输出的所有行编号. 如:用cat查看/etc/passwd [root@local ...
- 聚类之K均值聚类和EM算法
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...
- 常用Java工具类
一. org.apache.commons.io.IOUtils closeQuietly:关闭一个IO流.socket.或者selector且不抛出异常,通常放在finally块 toString: ...