A Simple Makefile Tutorial

Makefiles are a simple way to organize code compilation. This tutorial does not even scratch the surface of what is possible using make, but is intended as a starters guide so that you can quickly and easily create your own makefiles for small to medium-sized projects.

A Simple Example

Let's start off with the following three files, hellomake.c, hellofunc.c, and hellomake.h, which would represent a typical main program, some functional code in a separate file, and an include file, respectively.

hellomake.c hellofunc.c hellomake.h
#include <hellomake.h>

int main() {
// call a function in another file
myPrintHelloMake(); return(0);
}
#include <stdio.h>
#include <hellomake.h> void myPrintHelloMake(void) { printf("Hello makefiles!\n"); return;
}
/*
example include file
*/ void myPrintHelloMake(void);

Normally, you would compile this collection of code by executing the following command:

gcc -o hellomake hellomake.c hellofunc.c -I.

This compiles the two .c files and names the executable hellomake. The -I. is included so that gcc will look in the current directory (.) for the include file hellomake.h. Without a makefile, the typical approach to the test/modify/debug cycle is to use the up arrow in a terminal to go back to your last compile command so you don't have to type it each time, especially once you've added a few more .c files to the mix.

Unfortunately, this approach to compilation has two downfalls. First, if you lose the compile command or switch computers you have to retype it from scratch, which is inefficient at best. Second, if you are only making changes to one .c file, recompiling all of them every time is also time-consuming and inefficient. So, it's time to see what we can do with a makefile.

The simplest makefile you could create would look something like:

Makefile 1

hellomake: hellomake.c hellofunc.c
gcc -o hellomake hellomake.c hellofunc.c -I.

If you put this rule into a file called Makefile or makefile and then type make on the command line it will execute the compile command as you have written it in the makefile. Note that make with no arguments executes the first rule in the file. Furthermore, by putting the list of files on which the command depends on the first line after the :, make knows that the rule hellomake needs to be executed if any of those files change. Immediately, you have solved problem #1 and can avoid using the up arrow repeatedly, looking for your last compile command. However, the system is still not being efficient in terms of compiling only the latest changes.

One very important thing to note is that there is a tab before the gcc command in the makefile. There must be a tab at the beginning of any command, and make will not be happy if it's not there.

In order to be a bit more efficient, let's try the following:

Makefile 2

CC=gcc
CFLAGS=-I. hellomake: hellomake.o hellofunc.o
$(CC) -o hellomake hellomake.o hellofunc.o

So now we've defined some constants CC and CFLAGS. It turns out these are special constants that communicate to make how we want to compile the files hellomake.c and hellofunc.c. In particular, the macro CC is the C compiler to use, and CFLAGS is the list of flags to pass to the compilation command. By putting the object files--hellomake.o and hellofunc.o--in the dependency list and in the rule, make knows it must first compile the .c versions individually, and then build the executable hellomake.

Using this form of makefile is sufficient for most small scale projects. However, there is one thing missing: dependency on the include files. If you were to make a change to hellomake.h, for example, make would not recompile the .c files, even though they needed to be. In order to fix this, we need to tell make that all .c files depend on certain .h files. We can do this by writing a simple rule and adding it to the makefile.

Makefile 3

CC=gcc
CFLAGS=-I.
DEPS = hellomake.h %.o: %.c $(DEPS)
$(CC) -c -o $@ $< $(CFLAGS) hellomake: hellomake.o hellofunc.o
$(CC) -o hellomake hellomake.o hellofunc.o

This addition first creates the macro DEPS, which is the set of .h files on which the .c files depend. Then we define a rule that applies to all files ending in the .o suffix. The rule says that the .o file depends upon the .c version of the file and the .h files included in the DEPS macro. The rule then says that to generate the .o file, make needs to compile the .c file using the compiler defined in the CC macro. The -c flag says to generate the object file, the -o $@ says to put the output of the compilation in the file named on the left side of the :, the $< is the first item in the dependencies list, and the CFLAGS macro is defined as above.

As a final simplification, let's use the special macros $@ and $^, which are the left and right sides of the :, respectively, to make the overall compilation rule more general. In the example below, all of the include files should be listed as part of the macro DEPS, and all of the object files should be listed as part of the macro OBJ.

Makefile 4

CC=gcc
CFLAGS=-I.
DEPS = hellomake.h
OBJ = hellomake.o hellofunc.o %.o: %.c $(DEPS)
$(CC) -c -o $@ $< $(CFLAGS) hellomake: $(OBJ)
$(CC) -o $@ $^ $(CFLAGS)

So what if we want to start putting our .h files in an include directory, our source code in a src directory, and some local libraries in a lib directory? Also, can we somehow hide those annoying .o files that hang around all over the place? The answer, of course, is yes. The following makefile defines paths to the include and lib directories, and places the object files in an obj subdirectory within the src directory. It also has a macro defined for any libraries you want to include, such as the math library -lm. This makefile should be located in the src directory. Note that it also includes a rule for cleaning up your source and object directories if you type make clean. The .PHONY rule keeps make from doing something with a file named clean.

Makefile 5

IDIR =../include
CC=gcc
CFLAGS=-I$(IDIR) ODIR=obj
LDIR =../lib LIBS=-lm _DEPS = hellomake.h
DEPS = $(patsubst %,$(IDIR)/%,$(_DEPS)) _OBJ = hellomake.o hellofunc.o
OBJ = $(patsubst %,$(ODIR)/%,$(_OBJ)) $(ODIR)/%.o: %.c $(DEPS)
$(CC) -c -o $@ $< $(CFLAGS) hellomake: $(OBJ)
$(CC) -o $@ $^ $(CFLAGS) $(LIBS) .PHONY: clean clean:
rm -f $(ODIR)/*.o *~ core $(INCDIR)/*~

So now you have a perfectly good makefile that you can modify to manage small and medium-sized software projects. You can add multiple rules to a makefile; you can even create rules that call other rules. For more information on makefiles and the make function, check out the GNU Make Manual, which will tell you more than you ever wanted to know (really).

Makefile 简要辅导 【转载】的更多相关文章

  1. makefile 使用【转载】

    该篇文章为转载,是对原作者系列文章的总汇加上标注. 支持原创,请移步陈浩大神博客: http://blog.csdn.net/haoel/article/details/2886 makefile很重 ...

  2. openwrt: Makefile 框架分析[转载]

    openwrt目录结构 上图是openwrt目录结构,其中第一行是原始目录,第二行是编译过程中生成的目录.各目录的作用是: tools - 编译时需要一些工具, tools里包含了获取和编译这些工具的 ...

  3. 【linux】-Makefile简要知识+一个通用Makefile

    目录 Makefile Makefile规则与示例 为什么需要Makefile Makefile样式 先介绍Makefile的两个函数 完善Makefile 通用Makefile的使用 通用的Make ...

  4. InnoDB多版本(MVCC)实现简要分析(转载)

    http://hedengcheng.com/?p=148 基本知识 假设对于多版本(MVCC)的基础知识,有所了解.InnoDB为了实现多版本的一致读,采用的是基于回滚段的协议. 行结构 InnoD ...

  5. u-boot 之配置分析 (2)

    Makefile简要分析所有这些目录的编译连接都是由顶层目录的makefile来确定的. 1.在makefile中有: unconfig: @rm -f $(obj)include/config.h ...

  6. U-BOOT概述及源码分析(一)

    嵌入式Linux系统从软件角度通常可以分为以下4个层次: 引导加载程序 | Linux内核 | 文件系统 | 用户应用程序 嵌入式Linux系统中典型分区结构: 正常启动过程中,Bootloader首 ...

  7. 转载:谈谈Unicode编码,简要解释UCS、UTF、BMP、BOM等名词

    转载: 谈谈Unicode编码,简要解释UCS.UTF.BMP.BOM等名词 这是一篇程序员写给程序员的趣味读物.所谓趣味是指可以比较轻松地了解一些原来不清楚的概念,增进知识,类似于打RPG游戏的升级 ...

  8. 转载-------makefile 使用总结

    转载自:http://www.cnblogs.com/wang_yb/p/3990952.html 1. Makefile 简介 Makefile 是和 make 命令一起配合使用的. 很多大型项目的 ...

  9. 【转载】makefile经典教程

    该篇文章为转载,是对原作者系列文章的总汇加上标注. 支持原创,请移步陈浩大神博客: http://blog.csdn.net/haoel/article/details/2886 makefile很重 ...

随机推荐

  1. Codeforces Round #627 (Div. 3)

    1324A - Yet Another Tetris Problem(思维) 题意 给一个数组,每一个数组中的元素大小表示在竖直方向的方块数量,元素相邻怎竖直方向的方块也相邻,类似于俄罗斯方块当底层被 ...

  2. 关于C#三层架构增删改查中的“添加”问题

    关于“添加”功能的实现比较简单: 先来一个简单的界面: 然后是代码: ··采用的是三层架构的思想写的·· 在DAO中的方法为: (使用了动软自动生成代码) 希望对您有所帮助!

  3. const不同位置带来的区别

    const不同位置带来的区别 今天同学问我数据结构时,我对以下代码懵了一下: template <class T> class Link{ public: T data; Link< ...

  4. flask-类视图

    flask-类视图 标准类视图 from flask import Flask, render_template, views, jsonify app = Flask(__name__) class ...

  5. Javascript 获取随机颜色的几种方式

    先认识一下颜色值的表达方式 #FFFFFF,由6位16进制数组成.#FFFFFFFF,由8位16进制数组成,前6位表示颜色,后两位数表示透明度,数值越大,透明度越小.rgb(255,255,255), ...

  6. Linux 文件管理篇(三 属性管理)

    可读        r 可写        w 可执行        x 档案属性: 第一栏:执行list -al后第一栏的十个标志[1 - 10] 1: d    目录 -    档案 l    连 ...

  7. STC15F2K60S2串口通信的应用。

    前言:由于不可抗拒因素,初始的STC12C5A60S2芯片由于无法进行烧录(...因为没带有锁紧座的开发板),暂且使用STC15F2K60S2芯片.. 一 串行通信概述: 串口通信有SPI IIC U ...

  8. std::string 字符串分割

    #include <iostream> #include <string> #include <vector> std::vector<std::string ...

  9. ffmpeg 交叉编译 版本4.0.4

    touch run.sh chmod 755 run.sh ./run.sh run.sh #!/bin/sh ./configure \ --arch=aarch64 \ --cpu=armv8-a ...

  10. 【python实现卷积神经网络】池化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...