Just determine whether an algebraic expression can always simplify to zero.

Input

The first line contains a single integer T, indicating the number of test cases.
Each test case starts with an integer N, the number of tokens that describes a formula. The next N tokens describe a formula in reverse polish notation.

The notation works as follows. There is a stack that begins empty, and only the following commands manipulate the contents of the stack:

1. “x” pushes the variable x to the stack.

2. “sin”, “cos”, and “tan” replace the top element of the stack with its sin, cos, and tan, respectively.

3. “+”, “-”, and “*” replace the top two elements of the stack (a on top, followed by b) with their sum(b + a), difference (b − a), and product (b ∗ a), respectively.

You may assume that the input is valid, and results in a single item on the stack, which is the desired expression. The length of a line will be at most 300 characters. Note function arguments can contain functions.

 

Output

For each test case, output the case number first, then “Yes” if the expression is always zero, otherwise output “No”.
 

Sample Input

2

3 x sin sin

15 x sin x sin * x cos x cos * + x * x -

 

Sample Output

Case 1: No

Case 2: Yes

题意:判断表达式是否恒为0
思路:因为三角函数都是周期性变化的,所以我们可以枚举x来计算,但是精度自己内心也不确定,就按0.0001的精度累加,也A了
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stack>
#include <math.h>
using namespace std; #define pi acos(-1.0) stack<double> S;
char str[305][10]; int main()
{
int t,n,i,j,cas = 1;
int flag;
double x,y,z;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i = 0; i<n; i++)
scanf("%s",str[i]);
flag = 1;
for(x = -2.0; x<=2.0; x+=0.0001)//枚举x
{
for(j = 0; j<n; j++)
{
if(!strcmp(str[j],"x"))
S.push(x);
else if(!strcmp(str[j],"sin"))
{
y = S.top();
S.pop();
y = sin(y);
S.push(y);
}
else if(!strcmp(str[j],"cos"))
{
y = S.top();
S.pop();
y = cos(y);
S.push(y);
}
else if(!strcmp(str[j],"tan"))
{
y = S.top();
S.pop();
y = tan(y);
S.push(y);
}
else if(!strcmp(str[j],"+"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = y+z;
S.push(y);
}
else if(!strcmp(str[j],"-"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = z-y;
S.push(y);
}
else if(!strcmp(str[j],"*"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = y*z;
S.push(y);
}
}
y = S.top();
S.pop();
if(fabs(y)<1e-8 && S.empty())
continue;
else
{
flag = 0;
break;
}
}
printf("Case %d: ",cas++);
if(flag)
printf("Yes\n");
else
printf("No\n");
} return 0;
}

BNU29368:Check the Identity(栈)的更多相关文章

  1. bnuoj 29368 Check the Identity(栈)

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=29368 [题解]:模拟,然后对x,进行枚举,看是否所有都满足条件 [code]: #include ...

  2. 【ASP.NET Identity系列教程(二)】运用ASP.NET Identity

    注:本文是[ASP.NET Identity系列教程]的第二篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...

  3. ASP.NET Identity 二 (转载)

    来源:http://www.cnblogs.com/r01cn/p/5180892.html#undefined 推荐看原文,这里转载是怕好文章消失了. 注:本文是[ASP.NET Identity系 ...

  4. ASP.NET Identity系列教程-3【运用ASP.NET Identity】

    https://www.cnblogs.com/r01cn/p/5180892.html 14 运用ASP.NET Identity In this chapter, I show you how t ...

  5. 关于refs/for/ 和refs/heads/

    1.     这个不是git的规则,而是gerrit的规则, 2.     Branches, remote-tracking branches, and tags等等都是对commite的引用(re ...

  6. CLR via C# 3rd - 05 - Primitive, Reference, and Value Types

    1. Primitive Types        Any data types the compiler directly supports are called primitive types. ...

  7. [转]Installing SharePoint 2013 on Windows Server 2012 R2

    转自:http://www.avivroth.com/2013/07/09/installing-sharepoint-2013-on-windows-server-2012-r2-preview/ ...

  8. 《Effective C#》:区别和认识四个判等函数

    .Net有四个判等函数?不少人看到这个标题,会对此感到怀疑.事实上确是如此,.Net提供了ReferenceEquals.静态Equals,具体类型的Equals以及==操作符这四个判等函数.但是这四 ...

  9. 【转】区别和认识.Net四个判等函数

    原文地址:不详 .Net有四个判等函数?不少人看到这个标题,会对此感到怀疑.事实上确是如此,.Net提供了ReferenceEquals.静态Equals,具体类型的Equals以及==操作符这四个判 ...

随机推荐

  1. 使用PHP连接、操纵Memcached的原理和教程

    http://www.crazyant.net/1014.html Memcahced开源分布式内存对象缓存系统通过减少数据库的负担,从而能够加速你的web应用.在本文中我将解释怎样实现一个基于Mem ...

  2. C#+ArcEngine 序列化和反序列化AE对象

    http://www.cnblogs.com/jindin/archive/2009/07/23/1529695.html 在AE开发过程,总是要将某些对象暂时存储起来,像element,layer, ...

  3. tomcat安装不成功-提示找不到JAVA虚拟机

    今天重装tomcate,但是总是提示找不到java虚拟机,但是我明明装了jre和jdk,太烦人了 后来搜了各种方法,终于找到了解决方法,现在和大家分享下 到提示找java虚拟机那一步的时候,选择到jr ...

  4. JavaScript学习笔记(7)——JavaScript语法之函数

    函数就是包裹在花括号中的代码块,前面使用了关键词 function: function functionname() { //这里是要执行的代码 } 当调用该函数时,会执行函数内的代码. 可以在某事件 ...

  5. jquery动态插入行

    这是一个利用jquery动态插入输入内容的代码. html代码: <div title="分表2" class="ui-edit" style=" ...

  6. 嵌入式系统关机/Embeded System PowerOff HowTo?

    REFER: 嵌入式Linux实现关机命令 REFER: Embedded File System and power-off REFER: kernel/reboot.c REFER: PowerO ...

  7. c++ primer (5)2

    第三章 1.头文件不应包含using声明,因为头文件的内容会拷贝到所有引用它的文件中去. 2.初始化string对象的方式: string s1; //默认初始化,s1是一个空串 string s2( ...

  8. 九度OJ 1163 素数

    题目地址:http://ac.jobdu.com/problem.php?pid=1163 题目描述: 输入一个整数n(2<=n<=10000),要求输出所有从1到这个整数之间(不包括1和 ...

  9. 工厂方法(Factory Pattern)

    工厂方法模式定义:定义了一个创建对象的接口,但由子类决定要实例化的类是哪一个.工厂方法让类把实例化推迟到子类.(注:“决定”不是指模式允许子类本身在运行时做决定,而是指在编写创建者类时,不需要知道实际 ...

  10. ACE 6.2.0 RHEL6_Linux 编译

    第一步. 设置环境变量 export ACE_ROOT=$HOME/ace/ACE_wrappersexport LD_LIBRARY_PATH=$ACE_ROOT/ace:$ACE_ROOT/lib ...