http://poj.org/problem?id=1584

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; const int maxn=;
const double pi=acos(-1.0);
const double eps=10e-; int cmp(double x)
{
if(fabs(x)<eps) return ;
if(x>) return ;
return -;
} double sqr(double x)
{
return x*x;
} struct point
{
double x,y;
point(){}
point(double a,double b):x(a),y(b){}
bool operator <(const point &a)const
{
return (x<a.x)||(x==a.x&&y<a.y);
}
friend point operator -(const point &a,const point &b){
return point(a.x-b.x,a.y-b.y);
}
double norm(){
return sqrt(sqr(x)+sqr(y));
}
}p[maxn],ch[maxn]; struct line
{
point a,b;
line(){}
line(point x,point y):a(x),b(y){}
}; double det(point a,point b,point c)
{
return ((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
} double cross(point a,point b,point c)
{
return ((b.x-a.x)*(c.y-b.y)-(c.x-b.x)*(b.y-a.y));
}
double det1(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
} double dot(const point &a,const point &b)
{
return a.x*b.x+a.y*b.y;
} double dis(point a,point b)
{
return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
} double dis_point_segment(const point p,const point s,const point t)
{
if(cmp(dot(p-s,t-s))<) return (p-s).norm();
if(cmp(dot(p-t,s-t))<) return (p-t).norm();
return fabs(det1(s-p,t-p)/dis(s,t));
} bool pointonsegment(point p,point s,point t)
{
return cmp(det1(p-s,t-s))==&&cmp(dot(p-s,p-t))<=;
} int convex_hull(point *p,int n,point *ch)
{
sort(p,p+n);
int m=;
for(int i=; i<n; i++)
{
while(m>&&det(ch[m-],ch[m-],p[i])<=) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-; i>=; i--)
{
while(m>k&&det(ch[m-],ch[m-],p[i])<=) m--;
ch[m++]=p[i];
}
if(n>) m--;
return m;
} bool convex_hull1(point *p,int n)
{
int flag=;
p[n]=p[];
for(int i=; i<=n; i++)
{
//printf("%lf%lf %lf%lf %lf%lf\n",p[i-2].x,p[i-2].y,p[i-1].x,p[i-1].y,p[i].x,p[i].y);
int t=cmp(cross(p[i-],p[i-],p[i]));
//printf("%d\n",t);
if(!flag) flag=t;
if(flag*t<) return false;
}
return true;
}
int point_in(point t,point *ch,int n)
{
int num=,d1,d2,k;
ch[n]=ch[];
for(int i=; i<n; i++)
{
if(pointonsegment(t,ch[i],ch[i+])) return ;
k=cmp(det1(ch[i+]-ch[i],t-ch[i]));
d1=cmp(ch[i].y-t.y);
d2=cmp(ch[i+].y-t.y);
if(k>&&d1<=&&d2>) num++;
if(k<&&d2<=&&d1>) num--;
}
return num!=;
}
int main()
{
int n;
double r,x,y;
//freopen("sb.txt","w",stdout);
while(scanf("%d",&n)!=EOF)
{
if(n<) break;
scanf("%lf%lf%lf",&r,&x,&y);
point t(x,y);
for(int i=; i<n; i++)
{
scanf("%lf%lf",&p[i].x,&p[i].y);
} if(!convex_hull1(p,n))
{
printf("HOLE IS ILL-FORMED\n");
continue;
}
int cn=convex_hull(p,n,ch);
if(point_in(t,ch,cn))
{
double max1=dis_point_segment(t,ch[],ch[]);
for(int i=; i<cn+; i++)
{
max1=min(max1,dis_point_segment(t,ch[i-],ch[i]));
}
if(max1-r>=) printf("PEG WILL FIT\n");
else printf("PEG WILL NOT FIT\n");
}
else printf("PEG WILL NOT FIT\n");
}
return ;
}

poj A Round Peg in a Ground Hole的更多相关文章

  1. POJ 1518 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. POJ 1584 A Round Peg in a Ground Hole【计算几何=_=你值得一虐】

    链接: http://poj.org/problem?id=1584 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  3. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形 点到线段距离 点在多边形内

    首先判断是不是凸多边形 然后判断圆是否在凸多边形内 不知道给出的点是顺时针还是逆时针,所以用判断是否在多边形内的模板,不用是否在凸多边形内的模板 POJ 1584 A Round Peg in a G ...

  4. A Round Peg in a Ground Hole(凸包应用POJ 1584)

    A Round Peg in a Ground Hole Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5684 Accepte ...

  5. POJ 1584 A Round Peg in a Ground Hole(判断凸多边形,点到线段距离,点在多边形内)

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4438   Acc ...

  6. POJ 1584 A Round Peg in a Ground Hole 判断凸多边形,判断点在凸多边形内

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5456   Acc ...

  7. POJ 1584 A Round Peg in a Ground Hole[判断凸包 点在多边形内]

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6682   Acc ...

  8. POJ 1584:A Round Peg in a Ground Hole

    A Round Peg in a Ground Hole Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5741   Acc ...

  9. A Round Peg in a Ground Hole(判断是否是凸包,点是否在凸包内,圆与多边形的关系)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4628   Accepted: 1434 Description The D ...

随机推荐

  1. Web —— 小技巧集

    html中设置锚点定位3种方法(已知): 1. id 定位         <a href="#1F" name="1F">锚点1</a> ...

  2. bzoj3669: [Noi2014]魔法森林 lct

    记得去年模拟赛的时候好像YY出二分答案枚举a,b的暴力,过了55欸 然后看正解,为了将两维变成一维,将a排序,模拟Kruskal的加边过程,同时维护1到n的最大值,加入一条边e(u,v,a,b)时有以 ...

  3. C#构造函数里的base和this的区别

    用法一: 父类的构造函数总是在子类之前执行的.既先初始化静态构造函数,后初始化子类构造函数. public class BaseCircle { public BaseCircle() { Conso ...

  4. mybatis 与 ehcache 整合[转]

    1.简介 MyBatis 是支持普通SQL 查询,存储过程和高级映射的优秀持久层框架.MyBatis 消除了几乎所有的JDBC 代码和参数的手工设置以及结果集的检索. Ehcache 是现在最流行的纯 ...

  5. [AngularJS] 5 simple ways to speed up your AngularJS application

    Nowdays, Single page apps are becoming increasingly popular among the fornt-end developers. It is th ...

  6. iOS中navigationItem的titleView如何居中

    开发过程中,发现titleview很难居中,通过各种尝试终于找到了解决方法. 首先清楚你个概念: leftBarButtonItem,导航条中左侧button. rightBarButtonItem, ...

  7. Android(java)学习笔记230:服务(service)之绑定服务的细节

    绑定服务的细节 1. 如果onbind方法返回值是null,onServiceConnect方法就不会被调用: 2. 绑定的服务,在系统设置界面,正在运行条目是看不到的: 3. 绑定的服务,不求同时生 ...

  8. http方法

    http method(方法):1.get 从服务器获取资源2.post 向服务器发送资源3.put 向服务器推送资源4.delete 告诉服务器删除某个资源5.head 告诉服务器返回数据时不需要返 ...

  9. PHP 文件上传功能

    <?php /** * TestGuest Version1.0 * ================================================ * Web:2955089 ...

  10. 表达式:使用API创建表达式树(1)

    表达式树可使用Expressions类的静态工厂方法来创建.这种用API的方式创建给予我们在编程极大的灵活性,MSDN上关于表达式的例子也不少,但在使用过程中还是会遇到许多麻烦,对有的表达式类,介绍得 ...