《Linear Algebra and Its Applications》-chaper5-特征值与特征向量-基本概念
基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念。
首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的,就是说向量v乘以矩阵A得到的向量u相对于向量v“拉伸”了,即满足如下的一个式子:
Av =λv=u
那么这里我们称λ是矩阵A的特征值,v是对应特征值的特征向量。
严谨定义如下:

定理1:
三角矩阵的主对角线的元素是其特征值。
在证明之前,我们首先需要对定义做更充分的挖掘,特征向量x不能是零向量,我们将定义中的式子转变一下,即:
矩阵方程(A-λI)x=0,存在非平凡解的时候,才有特征值λ存在。

定理2:


《Linear Algebra and Its Applications》-chaper5-特征值与特征向量-基本概念的更多相关文章
- 《Linear Algebra and Its Applications》-chaper1-线性方程组- 线性变换
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. ...
- 《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-最小二乘问题
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方 ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法- 格拉姆-施密特方法
构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...
- 《Linear Algebra and Its Applications》-chaper3-行列式-克拉默法则
计算线性方程组唯一解的克拉默法则:
- 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换
承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...
- 《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式
这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩 ...
- 《Linear Algebra and Its Applications》-chaper2-矩阵代数-分块矩阵
分块矩阵的概念: 在矩阵的实际应用中,为了形式的更加简化我们将一个较大的矩阵的内部进行一定的划分,使之成为几个小矩阵,然后在表大矩阵的时候,矩阵的内部元素就用小矩阵代替. 进行了这一步简化,我们就要分 ...
随机推荐
- [解答]对‘’未定义的引用 collect2: 错误: ld 返回 1
写的makefile适用于32位,但是放到64位机器上make就有问题. 需要在makefile中gcc -o....的结尾加上-pthread,例如: bloomfilter.o: bloomfil ...
- DataList分页-增加自动编号列
<asp:DataList ID="dl_XUDAXIA" runat="server"> <HeaderTemplate> <t ...
- PL/SQL 访问网页(get or post方式)
在我们开发plsql程序的过程中,有时候难免要访问一些外部网站的数据.这个时候我们就要用到utl_http包. 使用utl_http包前需要注意的是,当前的用户下是否有访问外部网络的权限. 如下是自己 ...
- rac中 kull session会话脚本
方法:ALTER SYSTEM KILL SESSION '80, 6, @2'; --<= 80 sid,6 serial#,@2 inst_id kill session 脚本如下:sel ...
- oracle的学习 第二节:创建数据表
学习内容: A.创建数据库和表空间 B.创建用户和分配权限 C.创建数据表 一.创建数据库和表空间 (一)SQL语言的基本概念 1.概念 高级的结构化查询语言:沟通数据库服务器和客户的重要桥梁. PL ...
- C# 基础 知识点
类型 1.decimal为高精度浮点数,常用于货币计算,然后它不是基本类型,所以性能相对float和double要差. 2.@用于字符串前使转义字符 \ 无效,甚至能将回车当作换行符直接赋值给字符串 ...
- WPF 带CheckBox、图标的TreeView
WPF 带CheckBox.图标的TreeView 在WPF实际项目开发的时候,经常会用到带CheckBox的TreeView,虽然微软在WPF的TreeView中没有提供该功能,但是微软在WPF中提 ...
- Strategy 模式
可以看到 Strategy 模式和 Template 模式解决了类似的问题,也正如在 Template 模式中分析的,Strategy模式和 Template 模式实际是实现一个抽象接口的两种方式:继 ...
- MVVM模式应用 之加载Pivot的数据
在Pivot布局里,在进入页面时,不想页面数据全部加载,而是移动到哪个privotItem,加载那个privotItem的值. 这时我们先给pivot绑定一个command. <phone:Pi ...
- [BZOJ 3282] Tree 【LCT】
题目链接:BZOJ - 3282 题目分析 这道题是裸的LCT,包含 Link , Cut 和询问两点之间的路径信息. 写代码时出现的错误:Access(x) 的循环中应该切断的是原来的 Son[x] ...