Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 8176   Accepted: 2439

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ ik) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ ik).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31
解法:

举个例子,合并同余方程组

x%A=a   ①

x%B=b   ②

现在给出两种合并的方法:

1) 要把①②式合并成    x%C=c    ③         易知C一定是A和B的最小公倍数的倍数,否则不可能同时满足①②两式。

这里我们取C为A,B的最小公倍数,设d=gcd(A,B),则C=A*B/d.

接下来我们只要求出余数c即可,假设p是方程组①②的其中一个解

因为③是①②两式的合并方程,所以p也是③的解,所以可以得到c=p%C

接下来的问题就是怎么求出方程组①②的其中一个解。

首先,满足方程组①的最小解显然就是x=a

然后满足①②的解就是  (a+kA)%B=b,其中x=a+kA(k为任意自然数)

这个方程很明显可以用扩展欧几里德算法即可求得x,这样就完成了两个方程的合并

当所有的同余方程合并成一个方程 x%G=g  时候,g即为最终的最小解。。


 #include <iostream>
#include <math.h>
using namespace std;
#define ll long long int
ll funa(ll a,ll b)
{
if(b==) return a;
return funa(b,a%b);
}
void fun(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=;
y=;
return ;
}
fun(b,a%b,x,y);
ll t=x;
x=y;
y=t-(ll)(a/b)*y;
}
int main()
{
ll n;
while(cin>>n)
{
int i;
ll a[n][];
for(i=;i<n;i++)
cin>>a[i][]>>a[i][];
for(i=;i<n;i++)
{
ll z=funa(a[i-][],a[i][]);
if((a[i][]-a[i-][])%z!=)
break;
ll x,y;
fun(a[i-][],a[i][],x,y);
x=x*(a[i][]-a[i-][])/z;
x=(x%(a[i][]/z)+a[i][]/z)%(a[i][]/z);
x=x*a[i-][]+a[i-][];
a[i][]=a[i-][]*a[i][]/z;
a[i][]=x;
}
if(i>=n)
cout<<a[n-][]<<endl;
else cout<<-<<endl;
} } //(n+d)%23=p; (n+d)%28=e; (n+d)%33=i ,求n 。


												

poj2891非互质同余方程的更多相关文章

  1. POJ 2891 中国剩余定理的非互质形式

    中国剩余定理的非互质形式 任意n个表达式一对对处理,故只需处理两个表达式. x = a(mod m) x = b(mod n) km+a = b (mod n) km = (a-b)(mod n) 利 ...

  2. HDU5668 Circle 非互质中国剩余定理

    分析:考虑对给定的出圈序列进行一次模拟,对于出圈的人我们显然可以由位置,编号等关系得到一个同余方程 一圈做下来我们就得到了n个同余方程 对每个方程用扩展欧几里得求解,最后找到最小可行解就是答案. 当然 ...

  3. POJ 2891- Strange Way to Express Integers CRT 除数非互质

    题意:给你余数和除数求x 注意除数不一定互质 思路:不互质的CRT需要的是将两个余数方程合并,需要用到扩展GCD的性质 合并互质求余方程 m1x -+ m2y = r2 - r1 先用exgcd求出特 ...

  4. 数学--数论--HDU1825(积性函数性质+和函数公式+快速模幂+非互质求逆元)

    As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...

  5. hdu 1573 X问题 (非互质的中国剩余定理)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  7. LA 3720 高速公路(互质判斜率)

    https://vjudge.net/problem/UVALive-3720 题意: 有一个n行m列的点阵,问一共有多少条非水平非垂直的直线至少穿过其中的两个点. 思路: 没思路的题. 首先枚举矩形 ...

  8. as+bt=1是ab两数互质的充要条件

    [as+bt=1是ab两数互质的充要条件] 充分性,as+bt=1 => (a,b)=1: 因为as+bt=1,设c=(a,b),则c整除a和b,所以c整除as+bt,即c整除1,所以c=1,即 ...

  9. HDU3579Hello Kiki(中国剩余定理)(不互质的情况)

    One day I was shopping in the supermarket. There was a cashier counting coins seriously when a littl ...

随机推荐

  1. py2 HTMLTestRunner报告

    直接上代码吧. #coding:utf-8 #__author__ = 'carry' import unittest,HTMLTestRunner class Hello(unittest.Test ...

  2. 关于 ThinkPHP 在 Nginx 服务器上 使用U方法跳转问题

    这个问题已多次遇到,关于tp 框架 使用U 方法跳转, 在Nginx 服务器上可能会遇到路由跳转不过去前面带点(如:./xx) 解决这个问题,可以在tp的入口文件 index.php 里定义个常量 d ...

  3. ADO.NET中SQL Server数据库连接池

    连接到数据库服务器通常由几个需要很长时间的步骤组成. 必须建立物理通道(例如套接字或命名管道),必须与服务器进行初次握手,必须分析连接字符串信息,必须由服务器对连接进行身份验证,必须运行检查以便在当前 ...

  4. Spring事务管理(一)

    对于Spring相信很多做web开发的小活动一定不陌生,Spring中我们经常谈到的就是IOC和AOP,但是对于Spring的事务管理,相信大家一定也很感兴趣,今天我们就探讨一下Spring中的事务管 ...

  5. JavaScript学习日志(四):BOM

    BOM的核心对象就是window,这一章没什么好说的,总结一些比较常用的: 1,a未定义,a; //报错window.a; //undefined 不能用delete删除全局变量 2,html5不支持 ...

  6. 教程,Python图片转字符堆叠图

    Python 图片转字符画 一.实验说明 1. 环境登录 无需密码自动登录, 2. 环境介绍 本实验环境采用带桌面的UbuntuLinux环境,实验中会用到桌面上的程序: LX终端(LXTermina ...

  7. JS学习三(函数)

    [函数的声明格式] 1.函数的声明格式: function 函数名(参数1,参数2,...){ 函数体代码 return 返回值: } 函数的调用: ① 直接调用:函数名(参数1的值,参数2的值,.. ...

  8. 第二次项目冲刺(Beta阶段)5.22

    1.提供当天站立式会议照片一张 会议内容: ①检查前一天的任务情况,将遇到的困难反馈.解决. ②制定新一轮的任务计划. 2.每个人的工作 (1)工作安排 队员 今日进展 明日安排 王婧 #53(完成) ...

  9. 201521123040《Java程序设计》第7周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 参考资料: XMind 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代 ...

  10. 201521123096《Java程序设计》第四周学习总结

    1. 本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 继承能够动态绑定,运行时能够自动的选择调用方法,十分方便. 2. 书面作业 (1)注释的应用 ...