hdu3507 Print Article(斜率DP优化)
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost
M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
InputThere are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.OutputA single number, meaning the mininum cost to print the article.Sample Input
5 5
5
9
5
7
5
Sample Output
230
这是一道斜率优化的模板题吧。斜率优化算是真的弄懂了个大概,不然第一次听的时候什么也不会。
就是开头就是判断一个条件,不断取出头,保证最优,队列中的就是满足1比2优,2比3优,这样,因为后者进入的时间迟,所以又可以成为最优解,我注释了很多。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring> typedef long long LL;
using namespace std; const int NN=; int n,m;
int dp[NN],sum[NN],q[NN]; int GetY(int i,int j)
{
return sum[i]*sum[i]+dp[i]-(sum[j]*sum[j]+dp[j]);
} int GetX(int i,int j)
{
return *(sum[i]-sum[j]);
} int main()
{
int x;
while(~scanf("%d%d",&n,&m))
{
int head=,tail=;
q[tail++]=;//这一步必须,因为可能前i个数全部作为一段才是最小值
for(int i=;i<=n;i++)
{
scanf("%d",&x);
sum[i]=sum[i-]+x;
while(head+<tail&&GetY(q[head+],q[head])<=GetX(q[head+],q[head])*sum[i])
head++;//更新最优的点
dp[i]=(sum[i]-sum[q[head]])*(sum[i]-sum[q[head]])+m+dp[q[head]];//计算dp[i]的最小值
while(head+<tail&&GetY(i,q[tail-])*GetX(q[tail-],q[tail-])<=GetY(q[tail-],q[tail-])*GetX(i,q[tail-]))
tail--;//以k,j,i为判断斜率,然后去掉j。
q[tail++]=i;
}
printf("%d\n",dp[n]);
}
}
hdu3507 Print Article(斜率DP优化)的更多相关文章
- HDU3507 Print Article —— 斜率优化DP
题目链接:https://vjudge.net/problem/HDU-3507 Print Article Time Limit: 9000/3000 MS (Java/Others) Mem ...
- hdu3507 Print Article[斜率优化dp入门题]
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU3507 Print Article(斜率优化dp)
前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...
- [hdu3507 Print Article]斜率优化dp入门
题意:需要打印n个正整数,1个数要么单独打印要么和前面一个数一起打印,1次打印1组数的代价为这组数的和的平方加上常数M.求最小代价. 思路:如果令dp[i]为打印前i个数的最小代价,那么有 dp[i] ...
- HDU3507 Print Article (斜率优化DP基础复习)
pid=3507">传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]−sum[j])2 ...
- HDU 3507 - Print Article - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507 Zero has an old printer that doesn't work well s ...
- hdu 3507 Print Article(斜率优化DP)
题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...
- HDU 3507 Print Article(DP+斜率优化)
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) ...
- HDU 3507 Print Article 斜率优化
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
随机推荐
- keepalive之LVS-DR架构
author:JevonWei 版权声明:原创作品 Keepalive实战之LVS-DR 实验目的:构建LVS-DR架构,为了达到LVS的高可用目的,故在LVS-DR的Director端做Keepal ...
- Vuejs 页面的区域化与组件封装
组件的好处 当我用vue写页面的时候,大量的数据页面渲染,引入组件简化主页面的代码量,当代码区域块代码差不多相同时,组件封装会更加简化代码.组件是Vue.js最强大的功能之一. 组件可以扩展HTML元 ...
- Error Handling in ASP.NET Core
Error Handling in ASP.NET Core 前言 在程序中,经常需要处理比如 404,500 ,502等错误,如果直接返回错误的调用堆栈的具体信息,显然大部分的用户看到是一脸懵逼的 ...
- C# WinForm 跨线程访问控件
问题出现: 在WinForm 处理多线程访问主线程的控件时候,就会出现如图所示的错误对话框: 解决方案: 方案一:去掉线程访问主线程UI控件的安全检查,使用: Control.CheckFor ...
- System.Globalization.CultureInfo.InvariantCulture 解决不同地域字符串格式不同问题
同样的DateTime.ToShortDateString() 在不同的地域输出格式不同 如在美国的 日期格式为 : 月-日-年 如在中国的 日期格式为 : 年-月-日 一些时候,这个格式就会 ...
- JMeter打开脚本失败 如何解决?
最近有碰到JMeter打开之前的脚本,报错了,见下图: 后来发现这是因为之前保存脚本的 jmeter 和这次打开脚本的 jmeter 版本不一致(图一)或者版本一致而插件没有保持同步(图二)的原因: ...
- 我们为什么需要SDN?---致新人
引言:SDN为什么会出现?是什么原因使得学术界提出SDN?我们为什么需要SDN?如果你刚接触SDN方案时,你一定有这样的疑问.而问题的答案是:我们需要拥有更多可编程能力的网络,来支持快速增长的网络业务 ...
- IPsec_VPN实现技术【转载】
GRE Tunnel GRE Tunnel(General Routing Encapsulation 通用路由封装)是一种非常简单的VPN(Virtual Private Network 虚拟专用网 ...
- 英语app分析
Andorid 版本 第一部分 调研, 评测 搜索了一下必应跑出来的是微软必应,在印象中微软的产品都是很可靠地.安装之后对它的 排版字体图片等不是很喜欢,感觉有道词典会更亲切一点. 必应 ...
- 团队作业8——Beta 阶段冲刺1st day
一.今日站立式会议照片 二.每个人的工作 (1) 昨天已完成的工作: 今天是冲刺的第一天,昨天完成的是团队成员任务的分配 (2) 今天计划完成的工作: 界面的完善 (3) 工作中遇到的困难: 对于界面 ...